Читаем Кванты и музы полностью

Итак, Тамм лучше всех знает Юкаву. …Пасмурным осенним вечером я еду в подмосковную Жуковку. Тогда мы ещё не знали, что жизнь Игоря Евгеньевича скоро оборвётся. Он был приветлив, доброжелателен. Однако говорил с трудом, его состояние выдавали беспокойные иссохшие пальцы. Мне показалось — он рад разговору, быть может отвлекавшему его от болезни и гнетущих мыслей. Вероятно, на него приятно подействовали воспоминания. Те, кто участвовал в становлении новой физики, в научных битвах, приведших к рождению квантовой физики, не могут не волноваться, вспоминая эти бурные годы.

Изнуряющие дискуссии между Эйнштейном и Бором. Сметающая преграды дерзость Гейзенберга, Дирака, Шредингера, де Бройля. Клокотание мысли во всех университетах мира. Это они, молодые, отбросив декартовское, казалось, беспроигрышное, правило, гласившее, что реальным и конкретным считается лишь то, что можно изобразить «посредством фигур и движений» (попросту говоря — потрогать руками), заговорили о вещах и понятиях, которые никак не подходили под это правило. Физики предсказывали поведение предметов, которых не только не видели, но и не могли увидеть и тем более потрогать, — речь идёт об электронах, электромагнитных полях, ядрах атомов… Старики классики упрекали молодых в увлечении абстрактными рассуждениями, но не могли «схватить за руку». Предсказания оправдывались, формулы давали точные ответы на вопросы, картина строения материи становилась всё более ясной.

К 1927 году новая физика обрела права гражданства. Волны, бушующие вокруг центра научных битв — Копенгагена, разбегались по всему свету и не могли не достичь Япо нии. В это время в Киотском университете готовился стать физиком двадцатилетний Юкава. Окончив учёбу в 1929 году, он был полон отваги и намерения сокрушить загадки мироздания. Какая же первой попалась ему под руку?

Родись он чуть раньше и вступи в XX век зрелым учёным, он, возможно, посчитал бы, что знает об окружающем мире всё или почти всё. В начале века учёным, воспитанным на классической физике, мир казался ясным, как дважды два, и сотворённым из двух сортов частиц — электронов и протонов. Из этих элементарных частиц они мыслили себе строение всех вещей и предметов: звёзд и земли, цветов и людей. Из них казался построенным весь простой и сложный, многообразный мир: вода и воздух, горы и долины, Азия, Африка, Европа — в общем, всё и вся.

Но то поколение, к которому принадлежал Юкава и старший на двенадцать лет Тамм, в это больше не верило. Молодые всё больше ощущали чувство неблагополучия. Им никак не удавалось поверить в то, что множество различных элементов образуется из двух сортов материи.

Сомнения усилились ещё больше после того, как в 1932 году англичанин Чедвик открыл ещё одну частицу — нейтрон, во многом похожий на знакомый уже протон, но совершенно лишённый электрического заряда. Иваненко и Гейзенберг сразу попытались пустить новую частицу в дело: с её помощью они начали мысленно строить новую модель ядра атома. Партнёром нейтрона они взяли старую частицу — протон. Модель хорошо описывала многие свойства атомных ядер, но в ней не хватало самого главного. Тайной за семью печатями оставался вопрос о том, как протонам и нейтронам удаётся сплестись в столь прочный клубок, каким является атомное ядро. Ведь это не дом, где кирпичи связаны цементом, не машина, части которой соединены заклёпками, не живой организм из клеток. Что же такое — атомное ядро? Что связывает его в единое целое? Короче, какова природа ядерных сил?

В том же, 1932 году Тамм, который в это время руководил кафедрой теоретической физики в Московском университете, высказал предположение, что протоны и нейтроны удерживаются внутри ядер неизвестными ещё мощными силами, которые создаются при участии электронов. Это была обнадёживающая гипотеза, но расчёты показали Тамму, что сила эта получается в тысячу миллиардов раз слабее, чем нужно для удержания протонов в ядре. А ядра тем не менее существуют! Мир всё ещё не развалился на части! Скрепя сердце Тамм отказался от своей гипотезы.

Но ход мысли был дан. Указан путь. И эстафету принял молодой Юкава. Да, размышлял он, ядра существуют. Это объективная истина. Вероятно даже, что они действительно построены из нейтронов и протонов. Несомненно даже, что какие-то, пока неизвестные, силы удерживают их в ядрах. Но совсем не обязательно, чтобы эти силы создавались именно электронами. Быть может, тут замешаны иные частицы? Ещё неизвестные? Если есть три сорта частиц, почему бы не быть четвёртому?

Юкава решил выяснить это, описав строго математически, без натяжек и упрощений, с учётом всех возможных фактов то, что было известно о ядре. Он решил довериться математике — пусть уравнения сами вскроют природу новых частиц, найдут силовое поле, способное сцементировать атомное ядро.

Перейти на страницу:

Похожие книги