Читаем Лаплас. Небесная механика полностью

Ученый франко-итальянского происхождения Жозеф Луи де Лагранж (1736-1813) родился в Турине. Его интерес к математике разгорелся в самом раннем возрасте благодаря очерку астронома Эдмунда Галлея, описывавшего положительные стороны нотации Ньютона. Благодаря работам Лагранжа Эйлеру удалось решить большое количество задач, с которыми он долгое время не мог справиться. Однако с великодушием, достойным восхищения, Эйлер отказывался публиковать решение до того момента, пока этого не делал Лагранж, — «чтобы не присвоить себе никакой доли славы, которая к нему пришла». В 1766 году, когда Эйлер покинул Берлин, чтобы ехать в Санкт-Петербург, Лагранж занял его место (говорят, Фридрих II воскликнул, что наконец-то ему удалось найти замену одноглазому математику). Именно в Берлине он пишет свое лучшее произведение — «Аналитическую механику» (1788). Эта работа изложена так элегантно, что может быть квалифицирована как научная поэма.

Геометр по принуждению

Лагранж ненавидел геометрию, и отсутствие графиков в его труде было для него источником гордости: «В этом сочинении нет чертежей... Любители анализа с удовольствием увидят, что механика становится новой его отраслью». Однако — вот ирония судьбы! — самой большой почестью в его жизни станет звание геометра Империи, присвоенное Наполеоном. Среди достижений Лагранжа называют новое обобщение уравнений движения, а также новаторские методы решения дифференциальных уравнений (метод вариации постоянной). После смерти Фридриха II он получил от Людовика XVI предложение обосноваться в Париже. Там он встретил Лапласа и оказался втянутым в революционные потрясения. По натуре склонный к депрессиям, Лагранж в избытке употреблял чай и кофе и все силы отдавал математике, пока не подорвал свое здоровье.


Теория линейных дифференциальных уравнений тут же была дополнена: Эйлер и Лагранж объяснили, как решать системы линейных уравнений, в то время как их предшественники решали уравнения последовательно, одно за другим, однако буксовали каждый раз, когда вставал вопрос о нелинейных уравнениях. Нелинейные задачи — такие как уравнение маятника — необходимо было решать методом линеаризации, устраняя при этом все показатели, усложняющие уравнение. Иначе говоря, для данного нелинейного дифференциального уравнения было возможно решить аналогичное линейное уравнение и найти решения первого уравнения методом последовательных приближений к решениям второго. Этот подход называют теорией возмущений. Однако этот способ очень быстро показал свои ограничения и неэффективность в большинстве случаев. Просвещенные математики тех лет искали конкретные методы решения специфических уравнений.

Именно в этом направлении Лаплас и достиг некоторых успехов, предложив математические способы, которые с течением времени были улучшены. Ученый максимально использовал математические методы, которые изучил или придумал, в частности имевшие отношение к интегрированию, то есть к решению — точному или приближенному — дифференциальных уравнений, встреченных им в механике и астрономии. Начиная с публикации своей первой статьи Лаплас заинтересовался этими способами интегрирования, которые считал важным открытием.


БЕГ С ПРЕПЯТСТВИЯМИ: АКАДЕМИЯ И МОЛОДОЙ ВУНДЕРКИНД

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

Шри ауробиндо. Эссе о Гите – I
Шри ауробиндо. Эссе о Гите – I

«Махабхарата» – одно из самых известных и, вероятно, наиболее важных священных писаний Древней Индии, в состав этого эпоса входит «Бхагавад-Гита», в сжатой форме передающая суть всего произведения. Гита написана в форме диалога между царевичем Арджуной и его колесничим Кришной, являющимся Божественным Воплощением, который раскрывает царевичу великие духовные истины. Гита утверждает позитивное отношение к миру и вселенной и учит действию, основанному на духовном знании – Карма-йоге.Шри Ауробиндо, обозначив свое отношение к этому словами «Вся жизнь – Йога», безусловно, придавал книге особое значение. Он сделал собственный перевод Гиты на английский язык и написал к ней комментарии, которые впоследствии были опубликованы под названием «Эссе о Гите». Настоящий том содержит первую часть этого произведения.

Шри Ауробиндо

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Прочая религиозная литература / Религия / Эзотерика / Здоровье и красота
Эволюция: Неопровержимые доказательства
Эволюция: Неопровержимые доказательства

В результате научных поисков обнаруживается все больше и больше ископаемых переходных форм, отражающих важнейшие эволюционные события, которые произошли миллионы лет назад: появление оперения у динозавров, конечностей у рыб и многие другие. Кроме того, сегодня ученые имеют возможность изучать процессы видообразования у животных и растений, происходящие буквально на наших глазах. Впечатляющие доказательства эволюции множатся. Ведущий эволюционный генетик Джерри Койн демонстрирует «неизгладимую печать» процессов, которые первым объяснил Дарвин с ясностью и научной убедительностью, достойной своего великого предшественника. Особенно полезна эта книга для людей, которые не вполне понимают теорию эволюции и сомневаются в ней или же принимают ее, но не знают, как лучше аргументировать свою точку зрения.

Джерри Койн

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература