В рядах, какими пользовался Лаплас, числовая величина членов постепенно убывает, быстро или медленно. Если можно доказать, например, для убывающей геометрической прогрессии, что сумма членов ряда конечна, и если ее нельзя вычислить точно, то можно ограничиться суммированием первых, самых больших, членов ряда, пренебрегая остальными. В небесной механике каждый член ряда выражается сложной формулой, поэтому, не всегда можно строго доказать законность подобного приближения. В некоторых случаях может быть, что где-нибудь далеко от начала, в особенности при некоторых особых условиях, член такого ряда окажется настолько большим, что пренебречь им – значит получить совсем неверный результат. Рядам можно придавать различную форму, и от неудачного выражения ряда может зависеть результат. Бывали случаи, когда до Лапласа разные ученые приходили к разным результатам из-за одного лишь различия в виде формул, которыми они пользовались. Кроме совершенствования чисто математической стороны дела, известным средством для правильности использованного приема может служить практика, даже современная созданию теории. Лаплас говорит: «Чрезвычайная трудность задач, относящихся к системе мира, принудила геометров прибегнуть к приближениям, при которых всегда можно опасаться, как бы отбрасываемые величины не оказали заметного влияния. Когда наблюдения указывали им на такое влияние, они снова обращались к их анализу; при проверке они всегда находили причину замеченных отклонений; они определяли их закон, открывая неравенства, которые еще не были указаны наблюдениями. Таким образом, можно сказать, что сама природа содействовала аналитическому совершенствованию теорий, основанных на принципе всемирного тяготения».
В работе, названной «О принципе всемирного тяготения и о вековых неравенствах планет, которые от него зависят» (1773), Лаплас рассматривает замеченное до него явление «беспорядка» в движении гигантских планет.
Из сравнения древнейших наблюдений с современными выяснилось, что Сатурн Двигался С явным замедлением, а Юпитер испытывал ускорение своего движения.
Лаплас погрузился в изучение вопроса, на котором потерпели поражение и Эйлер и Лагранж, – по крайней мере, их выводы были противоположны.
Представляя возмущения в движении планет бесконечными рядами членов, создатели небесной механики убедились, что члены таких рядов бывают двух видов. В одних из них время, рассматриваемое как переменная величина, входит множителем в некоторой степени, в других же это время входит под – знак так называемой «периодической функции» (встречаются, впрочем, члены и смешанного вида). Первые из этих членов называются вековыми, вторые – периодическими. Если в формуле, выражающей изменения в величине какого-нибудь элемента, характеризующего определенную орбиту, есть только периодические члены, этот элемент испытывает лишь периодические колебания, не выходя из известных пределов. Например, в этом случае наклон плоскости орбиты планет к плоскости эклиптики то увеличивается, то уменьшается, но никогда не становится очень большим. Если в формуле содержатся вековые члены, то данный элемент с течением времени будет изменяться постоянно в одном и том же направлении. Например, линия узлов планетной орбиты будет непрерывно вертеться около Солнца, все время в одну и ту же сторону!
В 1773 году Лаплас применил ряды к исследованию движения Юпитера и Сатурна, пользуясь в усовершенствованной форме методом, предложенным Лагранжем (в 1766 г.). При этом Лаплас доказал, что Эйлер и Лагранж, вычисляя свои ряды, отбросили такие члены, которых нельзя было отбрасывать, ибо их величина с течением времени становилась не меньше той, какую давали первые члены рядов. Таким образом, Лаплас получил более точные формулы, и когда он подставил в них соответствующие числа для Юпитера и Сатурна, то оказалось, что, благодаря принятию им во внимание новых членов ряда, вековые ускорения для этих планет пропали. Это доказывало, что ускорения, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими, хотя и имеющими, повидимому, очень длинный период, измеряемый не одним столетием.
В 1784 году, через десять с лишним лет, Лаплас снова вернулся к этой нерешенной окончательно задаче. Тщательно пересмотрев свои формулы, Лаплас нашел в них такие члены, далеко стоящие от начала, которые, вопреки первоначальным ожиданиям, оказались не ничтожно малыми по своей величине, а весьма заметными. Кроме того, эти члены оказались явно периодическими. Лаплас нашел и период этих членов – он оказался равным 913 годам. Значит, если бы астрономические наблюдения продолжались уже достаточно долго, то по ним можно было бы заметить, как с течением времени ускоренное движение Юпитера сменится замедленным, а замедленное движение Сатурна сменится ускоренным.