Шавив и Вейзер пришли к заключению, что связь между климатом фанерозоя и космическими лучами не подлежит сомнению, в то время как влияние двуокиси углерода на климат древности должно быть меньше, чем обычно заявляют. Они внимательно изучили геологические данные, обращая внимание на несоответствия между уровнями двуокиси углерода и морскими температурами, и сделали вывод, что в будущем повышение температуры, связанное с удвоением содержания двуокиси углерода, будет намного ниже, чем предсказывала Межправительственная группа экспертов по изменению климата. И в одну секунду Шавив и Вейзер оказались персонами нон грата.
Спустя шесть месяцев группа из одиннадцати ученых яростно напала на их ересь, опубликовав статью в геофизическом журнале «Эос». Ведущим автором был Штефан Рамшторф из Потсдамского института климатических исследований. Статья начиналась с того, что ставила под сомнение влияние космических лучей на климат, опираясь при этом на возражения, уже успевшие устареть. И поскольку критики даже собственную статью не прочитали внимательно, Шавив и Вейзер легко опровергли многие пункты, просто повторив то, что они написали изначально.
Споры были слишком запутаны и темны, чтобы излагать их здесь, но один пример даст вам почувствовать их аромат. Рамшторф и его собратья по критике предположили, что данные о морских температурах были подтасованы, чтобы выделить колебания, совпадающие с вариациями космических лучей. Здесь приведено опровержение Шавива и Вейзера, поставившее критиканов на место: «Рассчитанные тренды температур… были уже опубликованы Вейзером и др. в 1999 и 2000 годах, при полном неведении относительно будущей работы Шавива»[68]
.«ГОА сегодня» выпустило более обоснованный комментарий, озаглавив его: «СО2
как главный фактор фанерозойского климата». Авторами выступили пять ученых под руководством Даны Ройера из университета штата Пенсильвания. Они утверждали, что график температур, основанный на содержании тяжелого кислорода в древних отложениях карбоната, должен быть уточнен с поправкой на кислотность морской воды в те времена. Тогда, как предполагали авторы статьи, связь между температурами и двуокисью углерода станет намного очевиднее:«Колебания потока космических лучей могут воздействовать на климат, но не они играли ведущую роль в течение многих миллионов лет»[69]
.Решайте сами, кто прав. Уровень двуокиси углерода опускается и поднимается только дважды за 550 миллионов лет, в то время как на графиках космических лучей вы можете увидеть по четыре всплеска и падения. И так как было четыре основных холодных и четыре теплых периода, модель безоговорочно поддерживает Шавива и Вейзера, когда они утверждают, что космические лучи — главная движущая сила климата. Но ледниковые периоды были не одинаковы по своей мощности, и, следовательно, помимо космических лучей действовали и иные силы.
Попытку прекратить разногласия о том, что важнее — космические лучи или углекислый газ, — предпринял Клаус Вальман из Института морских исследований ГЕОМАР в Киле (Германия). Он написал в журнал «Геохимия Геофизика Геосистемы» статью, где заявил, что не мог бы воспроизвести диаграммы температур с поправкой на кислотность без добавления охлаждающего эффекта космических лучей. С другой стороны, по его словам, двуокись углерода играет значительную роль в усилении или ослаблении изменений климата:
«Теплые периоды (кембрий, девон, триас, меловой) характеризуются низким уровнем космических лучей. Холодные периоды, от позднего каменноугольного до раннего пермского и поздний кайнозойский [следовательно, настоящее время], отмечены высоким притоком космических лучей и низким значением двуокиси углерода. […] Два умеренно холодных периода, совпадающие с ордовикско-силурийской и юрско-раннемеловой эпохами, характеризуются и высоким содержанием двуокиси углерода, и большим количеством заряженных частиц, так что парниковое потепление компенсировалось охлаждающим воздействием низких облаков»[70]
.Как сильно влиял углекислый газ на климат далекого прошлого? Когда мы видим провалы в графиках, 300 миллионов лет назад и в сегодняшней ледниковой эре, количество двуокиси углерода в воздухе составляет всего лишь несколько сотен частиц на миллион, но на подъемах оно вырастает до 5000 и 2000 частиц на миллион. Если захотите перевести это на язык, используемый для современного описания изменений климата, вам придется спросить, насколько поднимутся температуры, если содержание двуокиси углерода возрастет с 280 до 560 частиц на миллион — то есть увеличится в два раза по сравнению с уровнем, существовавшим до промышленной революции? Межправительственная группа экспертов по изменению климата полагала, что цифры будут в пределах от 1,5 до 4,5 градуса Цельсия.