Читаем Лейбниц. Анализ бесконечно малых полностью

Через несколько лет шотландский математик Джеймс Грегори (1638-1675) первым в Европе открыл этот ряд, о нем узнал Лейбниц и воспользовался им для выведения первого ряда для числа π, недостатком которого было то, что он очень медленно приближается к истинному значению. Он известен как ряд Грегори — Лейбница, хотя другие авторы сегодня его называют рядом Мадхавы — Лейбница:

π/4 = 1 - 1/3 + 1/5 + 1/7 + ... + (-1)n/(2n+1) + ...

И Ньютон, и Лейбниц также вычисляли ряды степеней других тригонометрических функций.

Вычисление числа k было постоянным предметом поиска математиков всех времен. Это число определяется как отношение между длиной окружности и ее диаметром. Многие пытались найти наибольшее количество десятичных знаков данного числа, и одним из использованных методов был метод числовых рядов. Он подразумевает, что по мере того, как вычисляется больше членов, появляется большее количество точных знаков после запятой.

Ряды не всегда были суммами. Например, математик Франсуа Виет (1540-1603), один из создателей современной алгебры, представил первое бесконечное произведение, приближающееся к значению π, таким образом:

π = 2 • 2/√2 • 2/√(2+√2) • 2/√(2+√(2+√2)) • 2/√(2+√(2+√(2+√2)))

Сам Грегори, в свою очередь, пытаясь вычислить площадь круга, пришел к другому выражению для вычисления я:

π/2 = (2 • 2 • 4 • 4 • 6 • 6 • 8 • 8 ...)/(1 • 3 • 3 • 5 • 5 • 7 • 7 • 9 ...)

XVII век был временем популярности сумм бесконечных рядов степеней, которые служили для поиска квадратуры фигур, ограниченных различными типами кривых, то есть площади сегмента какой-либо кривой.


ЛЕЙБНИЦ И БЕСКОНЕЧНЫЕ РЯДЫ

Когда в 1672 году Лейбниц навестил Гюйгенса в Париже, он рассказал ему о методе, над которым работал. Он использовался для нахождения суммы членов бесконечных рядов чисел и состоял в том, чтобы учитывать разность между членами последовательности. Если у нас есть ряд членов a0123<... an, то возьмем разности b1= a1-a0; b2= а21; b3= а32; ..., и тогда нулевая сумма а00 + а1 - а1 + а2 - а2 +...+ an-1 - an-1 + + an - an = а0 + b1 + b2 +...+ bn - an = 0, откуда следует, что сумма разностей равна:

b1 + b2 + b3 + ... + bn = an - a0

Лейбниц утверждал, что его метод разностей может быть применен для нахождения суммы любого ряда чисел, построенного в соответствии с правилом, и даже для бесконечных рядов — при условии, что они сходятся.

На той же встрече Гюйгенс задал Лейбницу задачу, которую он сам уже решил, чтобы тот проверил свой метод, — найти сумму чисел, обратных треугольным, то есть следующий ряд:

1 + 1/3 + 1/6 + 1/10 + ...

Лейбниц разделил на два каждый член, разложив дроби на разность двух:

1/2+1/6+1/12+1/20+...+1/2+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/2+1/2 = 1

следовательно, значение искомой суммы членов данного ряда составляет 2(1 + 1).

Также Лейбниц сформулировал то, что известно как теорема сходимости знакочередующихся рядов, то есть рядов, в которых чередуются складываемые и вычитаемые члены. В основном это выражение вида:

∑(-1)n • an = a0 - a1 + a2 - a3 + a4 - ... при an ≥ 0.

n=0

Данный критерий впервые появился в письме, адресованном Иоганну Бернулли (1667-1748) в 1713 году.

Для многих математиков критерии сходимости, которыми они пользовались, были основаны на том, чтобы найти частичные суммы ряда членов, например п членов. Они пытались найти упрощенное выражение, связанное с гг, а затем изучить, что произойдет, если число членов возрастет до бесконечности. Но не все математики были согласны с данным подходом, поскольку появлялись так называемые логические парадоксы, то есть ряды, расходящиеся при одном методе, а при применении других методов — наоборот.

Один из главных парадоксов того времени был связан с нахождением суммы знакочередующегося ряда, в котором an = 1 для любого n. То есть речь идет о ряде:

∑(-1)n = 1-1+1-1+1-1+1-1+...

n=1

Если взять четное число членов, частичная сумма равна 0, в то время как если взять нечетное число, частичная сумма равна 1. Лейбниц в итоге присвоил этой сумме значение 1/2.

Простое рассуждение для получения этого решения следующее:

5=1-1 + 1-1 + 1-1 + 1 -... = 1 - (1-1 + 1-1 + 1-1 +...) = 1-S,

откуда после упрощения получается 2S = 1, и, следовательно, искомая сумма равна S = 1/2.

Во время визита к Роберту Бойлю Пелл указал Лейбницу на то, что математик Франсуа Рейно уже опубликовал общий метод прерывания рядов с помощью разностей. Ученый ознакомился с данным исследованием, выяснил, что его метод отличается от метода Рейно, и написал свою работу для представления в Королевском обществе. Однако эта работа была встречена довольно холодно, и его даже обвинили в плагиате. Сам Лейбниц позже признал, что там действительно не содержалось никакого нового результата, а вся изюминка заключалась в новом представленном методе.

Провал работы заставил ученого понять, что ему очень не хватает математических сведений: он не знал о многом из того, что уже было опубликовано. Поэтому Лейбниц потратил почти год на самосовершенствование в этой области.


НОВОЕ ЗАНЯТИЕ

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература