Читаем Лекции полностью

Независимо от корректировки, которую вносит конвекция, есть два основных фактора, которые определяют накал провода или нити при переменном токе, — ток проводимости и бомбардировка. В случае с постоянным током нам приходится иметь дело только с первым из этих факторов, и нагрев при этом минимален, поскольку при постоянном токе сопротивление наименьшее. Когда ток переменный, сопротивление возрастает и усиливается нагрев. Так, если скорость колебания тока очень высока, то сопротивление может вырасти до такого значения, что нить можно накалить при помощи ничтожно малой силы тока, и мы можем взять короткий и толстый кусочек углерода или иного материала и накалить его при помощи силы тока, несравнимо меньшей, чем та, что требуется для той же степени накала нити от постоянного или низкочастотного тока. Этот эффект очень важен, так как показывает, как быстро меняются наши взгляды на этот предмет, и как быстро расширяется область наших знаний. Рассмотрим только один аспект проблемы осветительных приборов. Мы знаем, что для достижения практического успеха, как принято считать, нить должна быть тонкой и иметь высокое сопротивление. Но теперь мы знаем, что сопротивление нити постоянному току ничего не значит; нить может с таким же успехом быть толстой и короткой; ибо если ее поместить в разреженный газ, она накалится при токе малой силы. Всё это зависит от частоты и потенциала тока. Из всего сказанного можно сделать вывод, что для освещения нужно использовать высокую частоту, ибо это позволит применить короткую и толстую нить и ток меньшей силы.

Если нить поместить в однородную среду, весь нагрев будет происходить за счет тока проводимости, но если это будет вакуумный сосуд, то условия будут абсолютно другими. Здесь начинает работать газ и нагрев от тока проводимости, как показывают многие эксперименты, может быть незначительным по сравнению с эффектом от бомбардировки. Это несомненно так, когда контур не замкнут, а потенциал, конечно, высок. Предположим, что тонкая нить помещена в вакуумный сосуд и один ее конец соединен с катушкой высокого напряжения, а другой — с большой изолированной пластиной. Хотя цепь не замкнута, нить, как я уже показывал, сильно накаляется. Если частота и потенциал сравнительно малы, то нить накаляется от проходящего через нее тока. Если частоту и потенциал, последнее важнее, повысить, то пластина может быть небольшой, или ее может не быть совсем; и всё же нить накалена, так как весь накал происходит от бомбардировки. Практически совместить эффекты тока проводимости и бомбардировки можно так, как показано на рисунке 24, где обычная лампа имеет тонкую нить, один конец которой соединен с абажуром, играющим роль пластины, а второй — с источником тока высокого напряжения. Не следует думать, будто для нагревания проводника переменным током важен только разреженный газ, газ при обычном давлении тоже может играть важную роль, если разность потенциалов и частота крайне высоки. По этому поводу я уже заявлял, что когда проводник плавится под ударом молнии, ток, протекающий через него, может быть крайне мал, его может быть даже недостаточно, чтобы нагреть провод, если тот помещен в однородную среду.

Из всего вышесказанного становится ясно: когда проводник высокого сопротивления присоединяют к выводам источника тока высокой частоты и потенциала, может происходить значительное рассеивание энергии, более всего на концах провода, вследствие действия газа, окружающего проводник. Благодаря этому сила тока на участке, что находится посередине провода, может быть значительно меньше, чем сила тока на участке, который ближе к концу. Более того, ток течет в основном через внешние участки провода, но этот эффект не следует путать с поверхностным эффектом, как его обычно трактуют, ибо последний имеет место, или должен иметь место в непрерывной несжимаемой среде. Если много ламп накаливания последовательно соединить с источником такого тока, то лампы по краям цепи могут гореть ярко, а те, что посередине, останутся темными. Это в основном происходит вследствие бомбардировки, как уже говорилось ранее. Но даже при постоянном токе, если потенциал очень велик, лампы по краям цепи будут гореть ярче тех, что посередине. В таком случае нет ритмичной бомбардировки, и эффект достигается благодаря утечке. Эта утечка, или рассеивание, когда напряжение очень высокое, значительно во время использования ламп накаливания, а особенно, во время работы дуги, ибо дуга — это то же пламя. А в целом, конечно, рассеивание не так значительно при постоянном токе по сравнению с переменным.

Я разработал и поставил эксперимент, который достаточно интересно демонстрирует боковую диффузию. Если очень длинную трубку присоединить к выводу высокочастотной катушки, то яркость наиболее высока возле вывода и постепенно падает по направлению к дальнему концу. Это особенно заметно, если трубка узкая.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже