Читаем Лекции полностью

Но в соответствии с нашими объяснениями выходит, что воздух — изолятор, то есть он состоит из независимых носителей зарядов, погруженных в изолирующую среду. Так получается, когда воздух находится под обычным или немного выше, или очень малым давлением. Когда же воздух немного разрежен и проводит ток, тогда настоящие потери проводника также имеют место. В таком случае, конечно, значительное количество энергии может быть рассеяно в воздухе даже при постоянном потенциале, или импульсах низкой частоты, если плотность очень большая.

Когда газ находится под очень небольшим давлением, электрод нагревается сильнее, так как достигаются более высокие скорости. Если газ вокруг электрода сильно сжат, то смещения, а соответственно и скорости, очень малы, и нагрев незначителен. Но если в таком случае повысить частоту, то электрод нагреется до высокой температуры, точно так же, как он бы нагрелся, если бы газ находился под низким давлением; на самом деле откачка воздуха необходима, потому что мы не можем получить (и возможно передать) токи требуемой частоты.

Возвращаясь к теме электродной лампы, хорошо было бы как можно больше сконцентрировать тепло возле электрода путем предотвращения циркуляции воздуха в колбе. Если взять очень маленькую колбу, то в ней тепло будет концентрироваться лучше, чем в большой, но ее емкость может не позволить ей работать от катушки, но если это произойдет, стекло будет сильно греться. Проще всего усовершенствовать конструкцию, взяв лампу нужного размера и поместив внутрь нее небольшую колбу, диаметр которой точно выверен, расположив ее над тугоплавкой головкой накаливания. Эта конструкция показана на рисунке 28.

Колба L в данном случае имеет горловину п, достаточно широкую для того, что через нее прошла маленькая колба Ъ. В противном случае конструкция будет такой же, как показано на рисунке 18. Маленькая колба размещена на стеклянной ножке s, на которой есть тугоплавкая головка т. От алюминиевой трубки а ее отделяют несколько слоев слюды М для того, чтобы не допустить трещин стеклянной ножки вследствие резкого нагревания алюминиевой трубки при внезапном включении катушки. Если требуется производить свет только за счет накаливания электрода, то внутренняя колба должна быть как можно меньше. Если желательно вызвать фосфоресценцию, то она должна быть побольше, иначе она может нагреваться и свечение прекратится. В такой конструкции обычно только в маленькой колбе возникает фосфоресценция, так как внешняя колба практически не подвергается бомбардировке.

В некоторых лампах, показанных на рисунке 28, маленькие трубки были выкрашены фосфоресцирующей краской и получались прекрасные световые эффекты. Вместо того чтобы увеличивать размер внутренней колбы и избежать преждевременного нагрева, целесообразно взять больший электрод т. Это ослабит бомбардировку по причине меньшей электрической плотности.

Много ламп было изготовлено по схеме, изображенной на рисунке 29. Здесь маленькая колба Ь, содержащая тугоплавкую головку т, после того как в ней создали вакуум, была закупорена в большой лампе L, из которой воздух был немного откачан. Она также закупорена. Принципиальное отличие этой конструкции в том, что она позволяет достичь высокой степени вакуума и в то же время использовать большую колбу. В процессе опытов, проводимых с такими лампами, выяснилось, что лучше всего делать ножку 5 возле пробки е очень толстой, а подводящий провод w тонким, так как случалось такое, что ножка в этом месте нагревалась и колба трескалась. Часто получалось так, что вакуума в большой колбе было достаточно лишь для того, чтобы проходил разряд, а пространство между колбами было малинового цвета, давая любопытные эффекты. В некоторых случаях, когда вакуум был небольшой и воздух хорошо проводил ток, чтобы сильно накалить головку т, желательно было в верхней части горловины колбы поместить жестяную фольгу, замкнутую на изолированный предмет, землю или другой вывод катушки, так как хорошо проводящий ток воздух немного ослаблял эффект, возможно, потому, что на него индуктивно действовал провод w там, где он входил в колбу в точке е. Еще одна трудность, которая, однако, всегда присутствует, когда тугоплавкую головку помещают в небольшую колбу, обнаружилась в конструкции, показанной на рисунке 29, а именно: вакуум в колбе Ь снижался за короткое время.

Основная идея обеих конструкций — сосредоточить тепло в центральной части лампы, прекратив циркуляцию воздуха. Этого удалось добиться, но вследствие нагрева внутренней колбы и постепенного испарения стекла трудно поддерживать вакуум, даже если выбрать конструкцию, помещенную на рисунке 28, где колбы сообщаются.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже