Следовательно, раскрытие значения очень много добавляет к фактическим данным задачи. Раскрытие их значений добавляет к вещам, процессам и отношениям, перечисленным в условиях задачи, все, что мы знаем об этих вещах, процессах и отношениях.
Вот в чем основа решения задач. Она в добавлении к условиям всего, что нам вообще известно об объектах и отношениях, фигурирующих в исходных данных, и в использовании этих дополнительных знаний для преобразования данного в искомое, для выведения ответа из условий задачи. Поэтому неверно, что мы решаем задачу на основе ее данных. Мы решаем задачу на основе всех своих знаний о ее данных, а не только тех сведений о них, которые изложены в условиях.
Проиллюстрируем эту мысль одним примером. В 100-этажном небоскребе на 99 этаже живет лилипут. Каждое утро в 8.00 он выходит из квартиры, садится в лифт, спускается до первого этажа и идет на работу. Но по вечерам он ведет себя иначе. Возвратившись с работы, он садится в лифт и доезжает только до 85-го этажа. Там выходит и далее до своей квартиры поднимается пешком. Почему он так поступает?
Спрошенные предлагают много разных ответов. («Для моциона», «на 85-м этаже у него живет друг» и т.д.) Все эти ответы плохи, потому что не вытекают из всей совокупности условия задачи. В них неясно, какое значение имеет, что речь идет о лилипуте, почему на лифте он доезжает именно до 85-го этажа и др.
Правильный ответ будет: потому что он не может Дотянуться выше, чем до кнопки 85-го этажа.
Основа решения здесь очень отчетлива. Мы находим это решение, добавляя к исходным данным наши знания, что лилипут имеет очень маленький рост, что лифт управляется кнопками, которые расположены столбиком от первого этажа до самого верхнего, т.е. используя общие свойства и признаки, которые входят для нас в значение «лилипута» и «лифта».
В принципе от этого мало чем отличается по своей основе решение задачи, вроде (х + у) • (а — £)=?. Только здесь мы используем наши знания о значениях символов, их расположения, действий, которых они требуют и т.д.
То же можно сказать и о практических задачах, типа сборки-разборки, конструирования и т.д. Все они тоже основываются на учете значения отдельных частей и деталей в устройстве и функциях соответствующего механизма, прибора или машины. Только здесь часть информации о значении приходится получать из практического экспериментирования.
Но мы знаем, что так же как одно значение охватывает множество объектов, каждый объект в свою очередь имеет множество значений, так как входит в огромное множество различных отношений и имеет бесчисленные разнообразные свойства. (Напомним хотя бы примеры из XVIII лекции — какой громадный спектр значений оказался у такого обычного объекта, как «молоко».)
Отсюда видно, что для решения недостаточно просто раскрыть значения тех данных, которые излагаются в условиях задачи, т.е. все, что нам известно об объектах, свойствах и отношениях, перечисляемых в условиях задачи. Надо еще среди всего этого богатства знаний отобрать такие, которые имеют значение для решения. Надо обнаружить те свойства и отношения данных, которые позволяют определить требуемое.
Например, дана следующая задача: «Из пункта А и из пункта В, отделенных расстоянием 200 км, одновременно выходят навстречу друг другу два поезда. Первый идет со скоростью 70 км/час, второй — 85 км/час. Между ними со скоростью 80 км/час летает ласточка. Она вылетает с поезда А при его отправлении и летит к поезду В. Долетев до него, летит обратно к поезду А и т.д. Спрашивается, какой путь она проделает за один час?»
В большинстве случаев человек, получив эту задачу, начинает вычислять, сколько пройдет поезд А, пока ласточка долетит до поезда В. Затем — сколько останется пути от поезда В до А и т.д. Между тем, задача решается без каких-либо вычислений. Скорость ласточки 80 км/час. Значит, за час она пролетит 80 км.
Здесь решающее свойство не надо даже искать в наших знаниях об объектах. Оно дано прямо в условиях задачи. И решение сразу достигается выделением этого единственного отношения, которое имеет значение (скорость ласточки), из множества других данных, не имеющих значения (скорости поездов, расстояние между поездами, форма пути ласточки и др.). Между прочим, в задаче с лилипутом все отклоненные нами решения потому и плохи, что они не выводятся из значения ее данных, т.е. не определяются свойствами объектов «лилипут» и «лифт».
Как же обнаруживаются и используются человеком такие свойства и отношения данных, которые имеют значение для решения задачи?
Чтобы найти ответ (или ответы?), рассмотрим такой предельно упрощенный случай, как задача на угадывание задуманного числа. Испытуемому известно только, что это число целое и находится в интервале числового ряда между 0 и 37. Разрешается задавать любые вопросы, кроме вопроса, какое это число.
Какие стратегии решения приходится здесь наблюдать?