Читаем Лекции по схемотехнике полностью

Стрелка Пирса и  штрих Шеффера. Эти операции являются инверсиями операций дизъюнкции и конъюнкции и специального обозначения не имеют.

Рассмотренные логические функции являются простыми или элементарными, так как значение их истинности не зависит от истинности других каких либо функций, а зависит только от независимых переменных, называемых аргументами.

В цифровых вычислительных устройствах используются сложные логические функции, которые разрабатываются на основе элементарных функций. 

Сложной  является логическая функция, значение истинности которой зависит от истинности других функций. Эти функции являются аргументами данной сложной функции.

Например, в сложной логической функции   аргументами являются X1∨X2 и .

<p>1.2.2 Логические элементы </p>

Для реализации логических функций в устройствах цифровой обработки информации используются логические элементы. Условные графические обозначения (УГО) логических элементов, реализующих рассмотренные выше функции, приведены на рисунке 1.

Рисунок 1 – УГО логических элементов: а) Инвертор, б) ИЛИ, в) И, г) Исключающее ИЛИ, д) ИЛИ-НЕ, е) И-НЕ.

Сложные логические функции реализуются на основе простых логических элементов, путём их соответствующего соединения для реализации конкретной аналитической функции. Функциональная схема логического устройства, реализующего сложную функцию, , приведённую в предыдущем параграфе, приведена на рисунке 2.

Рисунок 2 – Пример реализации сложной логической функции

Как видно из рисунка 2, логическое уравнение показывает, из каких ЛЭ и какими соединениями можно создать заданное логическое устройство.

Поскольку логическое уравнение и функциональная схема имеют однозначное соответствие, то целесообразно упростить логическую функцию, используя законы алгебры логики и, следовательно, сократить количество или изменить номенклатуру ЛЭ при её реализации.

<p>1.2.3 Законы и тождества алгебры логики </p>

Математический аппарат алгебры логики позволяет преобразовать логическое выражение, заменив его равносильным с целью упрощения, сокращения числа элементов или замены элементной базы.

Законы:

1 Переместительный: X ∨ Y = Y ∨ X; X · Y = Y · X.

2 Cочетательный: X ∨ Y ∨ Z = (X ∨ Y) ∨ Z = X ∨(Y ∨ Z);  X · Y · Z = (X · Y) · Z = X· (Y· Z).

3 Идемпотентности: X ∨ X = X; X · X = X.

4 Распределительный: (X ∨ Y)· Z = X· Z ∨ Y· Z.

5 Двойное отрицание: .

6 Закон двойственности (Правило де Моргана):

Для преобразования структурных формул применяется ряд тождеств:

X ∨ X · Y = X; X(X ∨ Y) = X — Правила поглощения.

X· Y ∨ X·  = X, (X ∨ Y)·(X ∨ ) = X – Правила склеивания.

Правила старшинства логических операций.

1 Отрицание — логическое действие первой ступени.

2 Конъюнкция — логическое действие второй ступени.

3 Дизъюнкция — логическое действие третьей ступени.

Если в логическом выражении встречаются действия различных ступеней, то сначала выполняются первой ступени, затем второй и только после этого третьей ступени. Всякое отклонение от этого порядка должно быть обозначено скобками. 

<p>2 Основы синтеза цифровых устройств</p><p>2.1 Последовательность операций при синтезе цифровых устройств комбинационного типа</p>

1 Составление таблицы истинности комбинационного цифрового устройства (КЦУ) согласно его определения, назначения, словесного описания принципа работы.

2 Составление логической формулы согласно таблицы истинности.

3 Анализ полученной формулы с целью построения различных вариантов и нахождения наилучшего из них по тем или иным критериям.

4 Составление функциональной схемы КЦУ из элементов И, ИЛИ, НЕ.

<p>2.2 Аналитическая запись логической формулы КЦУ </p>

Запись в форме СДНФ (Совершенная дизъюнктивная нормальная форма).

В СДНФ логическая формула представляет собой логическую сумму нескольких логических произведений, в каждое из которых входят все независимые переменные с отрицанием или без него.

Формула получается в два этапа:

а) Записывается логическая сумма произведений, в каждое из которых входят все независимые переменные. Количество слагаемых равно  числу наборов таблицы истинности, на которых логическая функция равна «1»;

б) ставится знак инверсии над теми независимыми переменными, которые равны «0» в рассматриваемом наборе.

Запись в форме СКНФ (Совершенная конъюнктивная нормальная форма).

В СКНФ формула представляет собой логическое произведение нескольких логических сумм, в каждую из которых все независимые переменные с отрицанием или без него.

Как и в предыдущем случае, формула получается в два этапа:

а) Записывается логическое произведение всех сомножителей; количество сомножителей равно числу наборов таблицы истинности, на которых логическая функция равна «0»;

б) ставится знак инверсии над теми независимыми переменными, которые равны «1» в рассматриваемом наборе.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука