Читаем Леса моря. Жизнь и смерть на континентальном шельфе полностью

Образное сравнение фитопланктона с лесом представляется мне неплохим методом, для того чтобы подойти к рассмотрению сильно отличающихся между собой по масштабам явлений, управляющих основными аспектами жизни в Калифорнийском течении и вдоль него. Весной и летом вдоль побережья дуют сильные северо-западные ветры. Эти воздушные потоки, формирующиеся в зоне высокого атмосферного давления над северными районами Тихого океана, дуют параллельно Калифорнийскому течению. Поверхностные слои воды у побережья, увлекаемые ветром и течением и непрерывно вынуждаемые поворачивать по часовой стрелке под действием силы Кориолиса, устойчиво движутся на запад. По мере того как эти поверхностные массы воды отгоняются от берега, они заменяются поднимающейся из глубины холодной водой. Достигнув поверхности, вода, в свою очередь, медленно отходит в море. Подобное перемещение воды продолжается до тех пор, пока дует ветер. Непреоборимые физические законы превращают это явление в характерную особенность всего региона.

Апвеллинги, или подъемы воды из глубоких слоев, у побережья северной части Тихого океана наиболее интенсивно и постоянно протекают с конца весны до конца лета (с мая до сентября). Самая большая зона апвел-лингов охватывает район от Пуэнт-Рейес, севернее залива Сан-Франциско, до побережья центральной части штата Орегон. Это явление, однако, характерно не только для вод, прилегающих к берегам Соединенных Штатов, оно наблюдается во многих местах Мирового океана, главным образом вдоль западных побережий континентов. Пожалуй, наибольшего размаха апвеллинги достигают у побережья Перу. Весьма масштабны они и у побережий Британской Колумбии, Калифорнийского полуострова и Панамы.

Отдельные случаи апвеллингов, так же как и крупные океанские поверхностные течения, можно обнаружить при помощи термочувствительного оборудования на борту космических спутников. Однако они дают только поверхностную картину. Возможно, в будущем какой-нибудь оптический прибор, основанный на принципе сканирования, графически изобразит «анатомию» этого процесса, которую с таким трудом, штрих к штриху, воссоздавали океанографы, теоретики и экспериментаторы, манипулируя аппаратурой, спускаемой с борта корабля в глубины морей.

Поверхностные воды, отойдя от побережья, в конце концов снова опускаются. Однако это может произойти в десятках километров от зоны апвеллинга. Ученые считают, что спустя некоторое время развивается непрерывное циклическое движение воды, возникает конвекционная ячейка. Говоря грубо приблизительно, она представляет собой широкую полосу воды, медленно вращающуюся на одном месте вдоль побережья. В ветреную погоду передний край такой полосы смещается вдоль побережья к югу, описывая при этом спираль. Раз установившись, прибрежная конвекционная ячейка медленно перемещает воду до тех пор, пока ее движущая сила, северный ветер, не перестанет дуть на несколько дней. От двух до четырех недель требуется для того, чтобы в пределах одной типичной ячейки вода, органические вещества и планктон в том или ином виде вернулись в исходную точку.

Глубинные воды, поднимающиеся на освещенную солнцем поверхность, несут с собой массу питательных веществ для растений. По сравнению с поверхностными слоями вода из глубин насыщена питательными веществами, возникающими в результате разложения бактериями органических остатков, погружающихся в лишенные солнца глубины. Таким образом, апвеллинг выносит на свет нечто вроде компоста, имеющего очень сложный состав, но зато богатого и способного стимулировать рост водорослей.

В наш век спутников сравнительно нетрудно представить себе, как апвеллинг формируется в водах южного Орегона. Мы даже можем нарисовать в уме картину того, как все большее количество питательных веществ — нитраты, фосфаты, силикаты и другие — насыщает эту широкую полосу моря, пока этот своеобразный водоворот медленно направляется на юг.

Зону апвеллинга легко вообразить себе в виде громадного первого блюда на пышном банкете, в котором участвуют обитатели моря. Но, чтобы понять то, о чем пойдет речь ниже, необходимо перестроить свое воображение на явления совершенно иных, микроскопических масштабов.

Со времени изобретения микроскопа в XVII веке люди стремились при помощи своего интеллекта, воображения и интуиции проникнуть в природу фитопланктонных клеток. Им удалось собрать множество фактов, породивших множество теорий, и все же еще многие грани и нюансы этого микроскопического мира остаются загадочными. Возможно, что еще больше фактов остается за пределами возможностей микроскопа; возможно, что они недоступны даже для самого сложного и чувствительного аналитического инструмента, установленного в тщательно стерилизованной, снабженной кондиционером наземной лаборатории.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже