Читаем Лестница жизни. Десять величайших изобретений эволюции полностью

А как обстояли дела у гигантских динозавров - самых известных из древних растительноядных? Можно предположить, что они решили ту же проблему иначе. Если съедать пять корзин листьев в день, но не сжигать их постоянно, можно просто накапливать где-то потребляемую пищу, то есть увеличивать размер тела! Гиганты не только обладают большей “вместимостью”, но и всегда отличаются более низкой интенсивностью обмена веществ, а значит и более медленным оборотом белков и ДНК и, следовательно, меньшей потребностью в азоте. Итак, есть два способа успешно придерживаться рациона, богатого растительной пищей: крупные размеры в сочетании с замедленным обменом веществ или маленькие размеры в сочетании с ускоренным обменом веществ. О многом говорит факт, что и современные растительноядные ящерицы всегда выбирают одну из этих двух стратегий, хотя низкая аэробная мощность не дает им стать по-настоящему теплокровными. (Как предки этих ящериц пережили пермское вымирание - вопрос, который мы здесь обсуждать не будем.)

Но почему только динозавры стали такими огромными? На этот вопрос никто пока не дал достаточно убедительного ответа, хотя многие пытались. Джаред Даймонд и его коллеги в статье, опубликованной в 2001 году и посвященной другим вопросам, попутно высказали идею, что ответ вполне может крыться в повышенном уровне углекислого газа в атмосфере тех времен, что, по-видимому, увеличивало первичную продукцию, то есть скорость роста растений. Однако Даймонд не рассматривал сторону вопроса, связанную с азотом, которую осветили Классен и Нолет. Высокий уровень углекислого газа действительно повышает первичную продукцию, но одновременно и понижает содержание азота в тканях растений. Этим вопросом занимается недавно возникшая отрасль исследований, связанных с возможным влиянием нынешнего повышения уровня углекислого газа на режим питания нашей планеты. Итак, проблема, стоявшая перед цинодонтами и динозаврами, была еще острее, чем та, что стоит сегодня перед ящерицами: в те времена растительноядным животным для удовлетворения потребности в азоте нужно было есть еще больше. Строгим же вегетарианцам, должно быть, и вовсе приходилось поглощать пищу в огромных количествах.

Может быть, именно поэтому тероподам не была нужна теплокровность. Они были плотоядными, а значит, проблема баланса азота перед ними не стояла. Но, в отличие от пыхтящих цинодонтов, которым приходилось на равных соревноваться с растительноядными, оснащенными турбонагревателем, тероподы были выше этого. У них имелись необычайно эффективные легкие с аспирационным насосом, позволявшие им ловить все, что движется.

Лишь позже, уже в меловом периоде, некоторые из рапто- ров сделались вегетарианцами. Одним из первых, судя по всему, был манираптор Falcarius utahensis, описанный в 2005 году в журнале “Нейчур” группой исследователей из Юты. Линдси Занно, которая была в числе авторов, формально описавших этот вид, неформально охарактеризовала его как “предел несуразности: помесь страуса, гориллы и Эдварда Руки-ножницы”. Так или иначе, это было настоящее недостающее звено, наполовину раптор, наполовину травоядное, жившее примерно в то самое время, когда на Земле распространились цветковые растения, сделавшие переход к вегетарианству заманчивым как никогда. Но для предмета нашего обсуждения самый важный факт, касающийся этого вида, состоит, пожалуй, в том, что он относился к группе манирапторов, от которой предположительно произошли птицы. Не могло ли возникновение теплокровности у птиц тоже быть связано с переходом к вегетарианскому рациону, потребовавшему сжигать гораздо больше пищи для удовлетворения потребности в азоте?

Мы завершим эту главу умозрительными рассуждениями. Но от умозрительных рассуждений легко перейти к гипотезе - тому самому мысленному прыжку в неизвестность, о котором писал Питер Медавар, а именно это и есть основа настоящей науки. Здесь остается еще многое исследовать и проверять. Но если мы хотим разобраться в причинах ускоренного темпа нашей жизни, нам может понадобиться учитывать не только физиологические принципы, но и саму историю жизни на планете, причем тот ее период, когда особенно большую роль играли исключительные обстоятельства. Возможно, эта проблема скорее историческая, чем естественнонаучная, - в том смысле, что события могли пойти иначе, но случилось то, что случилось. Могла ли высокая аэробная мощность никогда не стать вопросом жизни и смерти, если бы не было пермского вымирания и последовавшего за ним периода пониженного уровня кислорода в атмосфере? Могла ли эволюция ничего не сделать с примитивными легкими рептилий? И могла ли теплокровность никогда не возникнуть, если бы несколько животных, обладавших высокой аэробной мощностью, не стали вегетарианцами? Даже если это исторические, а не естественнонаучные вопросы, чтение летописей этой истории все-таки составляет предмет естественных наук, и результаты, которые приносят исследования в этой области, существенно обогащают наши представления о природе жизни.


Глава 9. Сознание



Перейти на страницу:

Похожие книги

Метаэкология
Метаэкология

В этой книге меня интересовало, в первую очередь, подобие различных систем. Я пытался показать, что семиотика, логика, этика, эстетика возникают как системные свойства подобно генетическому коду, половому размножению, разделению экологических ниш. Продолжив аналогии, можно применить экологические критерии биомассы, продуктивности, накопления омертвевшей продукции (мортмассы), разнообразия к метаэкологическим системам. Название «метаэкология» дано авансом, на будущее, когда эти понятия войдут в рутинный анализ состояния души. Ведь смысл экологии и метаэкологии один — в противостоянии смерти. При этом экологические системы развиваются в направлении увеличения биомассы, роста разнообразия, сокращения отходов, и с метаэкологическими происходит то же самое.

Валентин Абрамович Красилов

Культурология / Биология, биофизика, биохимия / Философия / Биология / Образование и наука