Рентгеноструктурный анализ позволил сделать удивительные открытия и об эволюции цитоскелета - тех самых протянутых по всей клетке актиновых и тубулиновых проводов. Можно задаться вопросом, зачем клетке понадобилось вырабатывать целую сеть таких проводов - скоростных магистралей для двигательных белков, когда в ней еще не было самих этих двигательных белков. Не означало ли это, что эволюция поставила телегу впереди лошади? Нет, если цитоскелет был ценен сам по себе. Ценность цитоскелета определяется его структурными свойствами. Форма всех эукариотических клеток, от длинных и тонких нервных клеток до плоских клеток эндотелия, поддерживается именно нитями цитоскелета, и оказывается, что примерно то же самое относится и к бактериям. Многие поколения биологов приписывали многочисленные формы бактериальных клеток (палочковидную, спиралевидную, серповидную и так далее) окружающей эти клетки жесткой клеточной стенке. Поэтому, когда в середине 90-х годов XX века выяснилось, что у бактерий тоже есть цитоскелет, это стало большой неожиданностью. Бактериальный цитоскелет состоит из тонких нитей, очень похожих на актиновые и тубулиновые. Как мы теперь знаем, эти нити отвечают за поддержание сложной формы бактериальных клеток. (Мутации в генах цитоскелета приводят к тому, что обладающие сложной формой бактериальные клетки превращаются в простые шарики.)
Как и в случае с двигательными белками, генетическое сходство между белками бактериального и эукариотического цитоскелетов невелико. Но сходство их трехмерного строения, установленное лет десять назад с помощью рентгеноструктурного анализа, оказалось еще сильнее, чем у двигательных белков. По сути, бактериальные и эукариотические цитоскелетные белки почти точно накладываются друг на друга, так что одни и те же структуры и промежутки, а также несколько одинаковых ключевых аминокислот полностью совпадают. Ясно, что цитоскелет эукариотических клеток развился из бактериального. При этом эукариотические белки сохранили не только форму, но и функции далеких предшественников. И те, и другие играют общую структурную роль, но в обоих случаях цитоскелет способен на нечто большее, чем обеспечение неподвижной опоры. В отличие от нашего жесткого костного скелета клеточный скелет всегда динамичен, непрерывно меняется и перестраивается, непостоянен и всеобъемлющ, как грозовые облака. Он позволяет прикладывать силу, передвигая хромосомы, разделяя клетки пополам в ходе их удвоения, а также (по крайней мере, у эукариот) формировать наружные выросты и без помощи двигательных белков. Короче говоря, цитоскелет уже сам по себе обладает подвижностью. Как такое могло получиться?
Как актиновые, так и тубулиновые нити состоят из белковых субъединиц, собирающихся в длинные цепочки - полимеры. Эта способность к полимеризации не так уж удивительна: в конце концов, пластмассы тоже представляют собой полимеры, состоящие из субъединиц, образующих длинные молекулярные цепочки. Необычно в цитоскелете то, что его структура находится в состоянии динамического равновесия - переменчивого баланса присоединяющихся и отпадающих субъединиц, полимеризации и деполимеризации. В результате цитоскелет вечно перестраивается, надстраиваясь и снова разбираясь. Однако “строительные блоки” цитоскелета могут присоединяться к другим только с одного конца цепочки (как детали конструктора “Лего”, или - это, может быть, точнее, - как воланы, вложенные один в другой), а отделяться - только с другого. Это и дает цитоскелету возможность создавать механическую силу. И вот почему.
Если скорость добавления субъединиц на одном конце цепочки равна скорости их отделения на другом конце, то полимерная цепочка в целом сохраняет постоянную длину. В этом случае кажется, что она движется в направлении того конца, к которому добавляются субъединицы. Если на пути такой цепочки оказывается тот или иной предмет, она может физически двигать его вперед. В действительности его при этом двигает не сама цепочка. Этот предмет толкают беспорядочные молекулярные силы, но каждый раз, когда между ним и растущим концом цепочки образуется небольшой промежуток, туда может протиснуться и пристроиться к цепочке еще одна субъединица. Тем самым рост цепочки не дает предмету двигаться назад, а беспорядочные толчки двигают его вперед.