Даже в хорошо проведенном эксперименте (типа политического голосования) нельзя рассчитывать, что ваша оценка, основанная на небольшой выборке, будет верна.
Такая ошибка иногда называется
График ниже демонстрирует это в действии. Каждая линия представляет собой серию бросков монетки и показывает, как процент выброшенных «решек» меняется с первого до пятисотого броска в каждой серии. Обратите внимание, что кривые могут довольно сильно отклоняться от отметки 50 % в начале, но приближаются к этому числу все сильнее и сильнее по мере увеличения числа бросков. И даже после пятисотого броска некоторые числовые данные все еще далеки от 50 %.
Скорость сходимости для данного эксперимента зависит от ситуации. В следующем разделе мы объясним, как определить достаточный размер выборки. А сейчас мы хотим сосредоточиться на том, что пойдет не так, если ваша выборка слишком мала.
Для начала рассмотрим ошибку игрока,
названную в честь игроков в рулетку, которые считают, что последовательность черных и красных результатов на колесе рулетки в следующий раз скорее закончится, чем продолжится. Допустим, вам десять раз подряд выпадало черное. Жертвы этой ошибки ждут, что в следующий раз выше вероятность получить красное, тогда как на самом деле вероятность для каждого вращения не меняется. Чтобы эта идея перестала быть ошибочной, рулеткой должна управлять некая корректирующая сила, уравновешивающая результаты. Но это не тот случай.Иногда это также называют
судьи были менее склонны предоставлять политические убежища, если уже одобрили предыдущие два дела. Это также объясняет то неприятное чувство на школьном экзамене, когда вы заметили, что выбрали ответ «б» четыре раза подряд.
В случайных данных часто обнаруживаются последовательности и кластеры. Вы удивитесь, если узнаете, что есть шанс 50/50 выбросить четыре «решки» подряд в любой серии из двадцати бросков? Такие последовательности часто неправильно интерпретируют как свидетельства неслучайного поведения, ошибки интуиции, которые называются иллюзией кластеров.
Посмотрите на пару картинок ниже. Какая из них сгенерирована случайным образом?
Стивен Пинкер. Лучшие ангелы нашей природы. New York: Viking Books, 2011.
Эти картинки взяты из книги психолога Стивена Пинкера «Удачные ракурсы нашей натуры». Левая картинка, на которой очевидны кластеры, на самом деле случайная. Правая картинка, которая интуитивно кажется случайной, на самом деле такой не является. Это фотография светлячков на своде пещеры в Вайтомо, Новая Зеландия. Светлячки специально рассаживаются подальше друг от друга в борьбе за еду.
Во время Второй мировой войны лондонцы пытались найти закономерность в бомбардировках их города немецкими войсками. Некоторые считали, что целят в одни районы, а другие щадят. Появились теории заговоров о том, что немцы симпатизируют определенным районам, которые не подверглись обстрелу. Но статистический анализ показал, что нет никаких доказательств, подтверждающих неслучайную природу бомбардировок.
Невероятное не следует путать с невозможным. Если долго пытаться, можно получить даже редкий результат.
Некоторые люди выигрывают в лотерею, а некоторых ударяет молния. События с вероятностью «один на миллион» происходят довольно часто на планете, где живет 7 млрд человек.