Скорее всего, вы первым делом назовете 5 %. Однако вам дана вероятность, что тест объявляет человека пьяным, даже если на самом деле он трезв, то есть
Вы не учли зависимость результата от
Представим себе более реалистичный базовый процент, когда пьян 1 водитель из 1000. Значит, есть маленький шанс (0,1 %), что человек, которого случайно остановила полиция, пьян. А так как мы знаем, что один из 20 тестов выдает ошибку (ошибка возникает в 5 % случаев), полиция, скорее всего, сделает очень много ошибок, прежде чем действительно поймает пьяного за рулем.
На самом деле,
если полиция остановит тысячу человек, в среднем они проведут около 50 ошибочных тестов, пытаясь найти одного по-настоящему нетрезвого водителя. Таким образом, вероятность ошибки алкотестера составляет всего 2 %,
то есть аппарат ошибочно показывает, что человек пьян. Или можно заявить, что трезвые водители попадаются в 98 % случаев. А это намного, намного больше, чем 5 %!
Итак,
Теперь, когда вы знаете о теореме Байеса, вы также должны знать, что в статистике есть две школы, основанные на разных представлениях о вероятности: частотная
и байесовская. Большинство исследований, о которых вы слышите в новостях, основаны на частотной статистике, которая требует и опирается на множество наблюдений за событием, прежде чем сделать надежные статистические выводы. Частотники считают, что вероятность фундаментально связана сНаблюдая частоту результатов в большой выборке (например, спрашивая большое количество людей, одобряют ли они Конгресс), частотники вычисляют неизвестное количество. Но если точек ввода данных очень мало, они ничего не могут сказать по существу, потому что доверительные интервалы, которые они вычислят, будут очень большими. С их точки зрения, вероятность без наблюдений не имеет смысла.
Напротив, байесовцы позволяют себе вероятностные суждения о любой ситуации, независимо от того, были ли какие-либо наблюдения. Для этого они начинают с приведения соответствующих данных к статистическим определениям. Например, подбирая монетку на улице, изначально вы, вероятно, решите, что шансы выбросить решку составляют 50/50, даже если никогда раньше не видели, чтобы эту монетку подбрасывали. В байесовской статистике можно учесть в задаче такое знание базовых процентов. А в частотной статистике так сделать нельзя.
Многие люди считают байесовский взгляд на вероятность более интуитивным, потому что он похож на естественное развитие ваших убеждений. В повседневной жизни вы не начинаете каждый раз с нуля, как частотники. Например, в вопросах политики отправная точка – это ваши знания по определенному вопросу (байесовцы зовут это
Сильное априори – это отношения на всю жизнь, а слабое – только первое впечатление.