Читаем Лягушка в кипятке и еще 300 популярных инструментов мышления, которые сделают вас умнее полностью

Последняя мера, к которой часто прибегают, чтобы выявить статистическую значимость результата, называется p-значением, официальное определение которого – вероятность получения результата, равного или превышающего наблюдаемый, если предположить, что нулевая гипотеза верна. По сути своей, если p-значение меньше выбранного уровня ложноположительного результата (5 %), можно сказать, что результат обладает статистической значимостью. P-значения часто используются в отчетах об исследованиях, чтобы сообщить о такой значимости.

Например, p-значение, равное 0,01, значит, что разница, равная или превышающая наблюдаемую, будет иметь место только в 1 % случаев, если приложение окажется неэффективным. Это значение соответствует значению на крайнем хвосте левой кривой нормального распределения и ближе к центру правой кривой нормального распределения. Такое расположение означает, что результат больше соответствует альтернативной гипотезе: данное приложение имеет эффект 15 %.

Теперь обратите внимание, как две кривые накладываются друг на друга, показывая, что некоторая разница между двумя группами согласуется с обеими гипотезами (одновременно под обоими колоколами кривых). Эти серые области показывают, где могут возникнуть два типа ошибки. Светло-серая область – это ложноположительный, а темно-серая – ложноотрицательный результат.

Ложноположительный результат получится, если между двумя группами обнаружится большая разница (как там, где p-значение равно 0,01), но на самом деле приложение не действует. Это произойдет, если кто-то из группы без приложения случайно долго не мог уснуть, а кто-то из группы с приложением случайным образом легко уснул.


Статистическая значимость


И наоборот, ложноотрицательный результат получится, если приложение на самом деле помогает людям уснуть быстрее, но наблюдаемая разница слишком мала, чтобы обладать статистической значимостью. Если исследование имеет типичную мощность 80 %, этот ложноотрицательный сценарий будет происходить в 20 % случаев.

Предположим, что размер выборки остается фиксированным. Снижение вероятности ложноположительной ошибки эквивалентно переносу пунктирной линии вправо с сокращением светло-серой области. Но при этом шанс сделать ложноотрицательную ошибку возрастает (сравните верхний рисунок с оригиналом).

Если хотите уменьшить процент одной из ошибок, не увеличивая другую, придется увеличить размер выборки. При этом каждая из кривых нормального распределения станет уже (сравните нижний рисунок также с оригиналом).


Статистическая значимость


Увеличение размера выборки и сужение кривых нормального распределения уменьшают наложение двух кривых, в процессе сокращая общую серую область. Конечно, это привлекательно, потому что уменьшается вероятность совершить ошибку. Но, как мы отметили в начале раздела, есть множество причин, по которым увеличение размера выборки может оказаться нецелесообразным (время, деньги, риск для участников и т. д.).

В таблице показано, как изменяется размер выборки для разных пределов уровня ошибки в исследовании приложения для сна. Вы увидите, что, если процент ошибок понизится, размер выборки придется увеличить.

Все значения размеров выборки в следующей таблице зависят от выбранной альтернативной гипотезы с разницей в 15 %. Размеры выборки увеличивались бы и дальше, если бы разработчики хотели обнаружить еще меньшую разницу, и уменьшились бы, если бы хотели найти только большую разницу.


Размер выборки изменяется с мощностью и значимостью


Исследователям часто приходится брать выборку поменьше, чтобы сэкономить время и деньги, из-за чего выбор большей разницы для альтернативной гипотезы становится привлекательным. Но такой выбор сопряжен с высоким риском. Например, разработчики могли бы сократить размер выборки всего до 62 человек (вместо 268), если бы заменили разницу в альтернативной гипотезе на 30 % между двумя группами (а не 15 %).

Но если в действительности приложение дает разницу всего 15 %, с этим меньшим размером выборки они смогут обнаружить такую меньшую разницу только в 32 % случаев! Это меньше, чем изначальные 80 %, и значит, что в 2/3 случаев будет получен ложноотрицательный результат, который не покажет разницу в 15 %. В идеале любой эксперимент нужно разрабатывать так, чтобы обнаруживать малейшую существенную разницу.

Последнее замечание о p-значениях и статистической значимости: большинство статистиков предостерегают, что нельзя чрезмерно полагаться на p-значения при интерпретации результатов исследования. Неспособность найти значимый результат (достаточно малое p-значение) – это не то же самое, что уверенность в отсутствии эффекта.

Отсутствие доказательств не является доказательством отсутствия.

Точно так же, даже несмотря на то, что исследование могло достичь лишь низкого p-значения, этот результат может быть неприменим, что мы рассмотрим в заключительном разделе.

Перейти на страницу:

Похожие книги