Читаем Linux API. Исчерпывающее руководство полностью

В зависимости от географического местоположения, внутри систем UNIX время представляется отмеренным в секундах от начала его отсчета (Epoch): от полуночи 1 января 1970 года, по всемирному координированному времени — Universal Coordinated Time (UTC, ранее называвшемуся средним временем по Гринвичу — Greenwich Mean Time, или GMT). Примерно в это время начали свое существование системы UNIX. Календарное время сохраняется в переменных типа time_t, который относится к целочисленным типам, указанным в SUSv3.

В 32-разрядных системах Linux тип time_t, относящийся к целочисленным типам со знаком, позволяет представлять даты в диапазоне от 13 декабря 1901 года, 20:45:52, до 19 января 2038 года, 03:14:07. (В SUSv3 нет определения отрицательного значения типа time_t.) Таким образом, многие имеющиеся на сегодня 32-разрядные системы UNIX сталкиваются с теоретически возможной проблемой 2038 года, которую им предстоит решить до его наступления, если они в будущем будут выполнять вычисления, связанные с датами. Эту проблему существенно смягчает уверенность в том, что к 2038 году все системы UNIX станут, скорее всего, 64-разрядными или даже более высокой разрядности. Но встроенные 32-разрядные системы, век которых продлится, видимо, намного дольше, чем представлялось поначалу, все же могут столкнуться с этой проблемой. Кроме того, она останется неразрешенной для любых устаревших данных и приложений, работающих со временем в 32-разрядном формате time_t.

Системный вызов gettimeofday() возвращает календарное время в буфер, на который указывает значение аргумента tv.

#include

int gettimeofday(struct timeval *tv, struct timezone *tz);

Возвращает 0 при успешном завершении или –1 при ошибке

Аргумент tv является указателем на структуру следующего вида:

struct timeval {

time_t tv_sec; /* Количество секунд с 00:00:00, 1 янв 1970 UTC */

suseconds_t tv_usec; /* Дополнительные микросекунды (long int) */

};

Хотя для поля tv_usec предусмотрена микросекундная точность, конкретная точность возвращаемого в нем значения определяется реализацией, зависящей от архитектуры системы. (Буква «u» в tv_usec произошла от сходства с греческой буквой μ («мю»), используемой в метрической системе для обозначения одной миллионной доли.) В современных системах x86-32 (то есть в системах типа Pentium с регистром счетчика меток реального времени — Timestamp Counter, значение которого увеличивается на единицу с каждым тактовым циклом центрального процессора), вызов gettimeofday() предоставляет микросекундную точность.

Аргумент tz в вызове gettimeofday() является историческим артефактом. В более старых реализациях UNIX он использовался в целях извлечения для системы информации о часовом поясе (timezone). Сейчас этот аргумент уже вышел из употребления и в качестве его значения нужно всегда указывать NULL.

При предоставлении аргумента tz возвращается структура timezone, в чьих полях содержатся значения, указанные в устаревшем аргументе tz предшествующего вызова settimeofday(). Структура включает два поля: tz_minuteswest и tz_dsttime. Поле tz_minuteswest показывает количество минут, которое нужно добавить в этом часовом поясе (zone) для соответствия UTC; отрицательное значение показывает коррекцию в минутах по отношению к востоку от UTC (например, для ценральноевропейского времени это на один час больше, чем UTC, и поле будет содержать значение –60). Поле tz_dsttime содержит константу, придуманную для представления режима летнего времени — day-light saving time (DST), вводимого в этом часовом поясе. Дело в том, что режим летнего времени в устаревшем аргументе tz не может быть представлен с помощью простого алгоритма. (Это поле в Linux никогда не поддерживалось.) Подробности можно найти на странице руководства gettimeofday(2).

Системный вызов time() возвращает количество секунд, прошедших с начала отсчета времени (то есть точно такое же значение, которое возвращает gettimeofday() в поле tv_sec своего аргумента tv).

#include

time_t time(time_t *timep);

Возвращает при успешном завершении количество секунд, прошедших с начала отсчета времени, или (time_t) –1 при ошибке

Если значение аргумента timep не равно NULL, количество секунд, прошедшее с начала отсчета времени, также помещается по адресу, который указывает timep.

Поскольку time() возвращает одно и то же значение двумя способами, и единственной возможной ошибкой, которая может произойти при использовании time(), является предоставление неверного адреса в аргументе timep (EFAULT), зачастую применяется такой вызов (без проверки на ошибку):

t = time(NULL);

Причина существования двух системных вызовов (time() и gettimeofday()) с практически одинаковым предназначением имеет исторические корни. В ранних реализациях UNIX предоставлялся системный вызов time(). В 4.2BSD добавился более точный системный вызов gettimeofday(). Существование time() в качестве системного вызова теперь считается избыточным; он может быть реализован в виде библиотечной функции, вызывающей gettimeofday().

Перейти на страницу:

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
C# 4.0: полное руководство
C# 4.0: полное руководство

В этом полном руководстве по C# 4.0 - языку программирования, разработанному специально для среды .NET, - детально рассмотрены все основные средства языка: типы данных, операторы, управляющие операторы, классы, интерфейсы, методы, делегаты, индексаторы, события, указатели, обобщения, коллекции, основные библиотеки классов, средства многопоточного программирования и директивы препроцессора. Подробно описаны новые возможности C#, в том числе PLINQ, библиотека TPL, динамический тип данных, а также именованные и необязательные аргументы. Это справочное пособие снабжено массой полезных советов авторитетного автора и сотнями примеров программ с комментариями, благодаря которым они становятся понятными любому читателю независимо от уровня его подготовки. Книга рассчитана на широкий круг читателей, интересующихся программированием на C#.Введите сюда краткую аннотацию

Герберт Шилдт

Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных