Читаем Linux программирование в примерах полностью

Системный вызов time() и тип time_t представляют время в секундах в формате отсчета с начала Эпохи. Разрешения в одну секунду на самом деле недостаточно, сегодняшние машины быстры, и часто бывает полезно различать временные интервалы в долях секунды. Начиная с 4.2 BSD, Berkley Unix представил ряд системных вызовов, которые сделали возможным получение и использование времени в долях секунд. Эти вызовы доступны на всех современных системах Unix, включая GNU/Linux.

<p>14.3.1. Время в микросекундах: <code>gettimeofday()</code></p>

Первой задачей является получение времени дня:

#include

int gettimeofday(struct timeval *tv, void *tz); /* определение POSIX, а не GLIBC */

gettimeofday() позволяет получить время дня.[156] В случае успеха возвращается 0, при ошибке -1. Аргументы следующие:

struct timeval *tv

Этот аргумент является указателем на struct timeval, которая вскоре будет описана и в которую система помещает текущее время.

void *tz

Это аргумент больше не используется; он имеет тип void*, поэтому он всегда должен равняться NULL. (Справочная страница описывает, для чего он использовался, а затем утверждает, что он устарел. Прочтите, если интересуетесь подробностями.)

Время представлено структурой struct timeval:

struct timeval {

 long tv_sec; /* секунды */

 long tv_usec; /* микросекунды */

};

Значение tv_sec представляет секунды с начала Эпохи; tv_usec является числом микросекунд в секунде.

Справочная страница GNU/Linux gettimeofday(2) документирует также следующие макросы:

#define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)

#define timercmp(tvp, uvp, cmp) \

 ((tvp)->tv_sec cmp (uvp)->tv_sec || \

 (tvp)->tv_sec == (uvp)->tv_sec && \

 (tvp)->tv_usec cmp (uvp)->tv_usec)

#define timerclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)

Эти макросы работают со значениями struct timeval*; то есть указателями на структуры, и их использование должно быть очевидным из их названий и кода. Особенно интересен макрос timercmp(): третьим аргументом является оператор сравнения для указания вида сравнения. Например, рассмотрим определение того, является ли одна struct timeval меньше другой:

struct timeval t1, t2;

...

if (timercmp(&t1, & t2, <))

 /* t1 меньше, чем t2 */

Макрос развертывается в

((&t1)->tv_sec < (&t2)->tv_sec || \

(&t1)->tv_sec == (&t2)->tv_sec && \

(&t1)->tv_usec < (&t2)->tv_usec)

Это значит: «если t1.tv_sec меньше, чем t2.tv_sec, ИЛИ если они равны и t1.tv_usec меньше, чем t2.tv_usec, тогда…».

<p>14.3.2. Файловое время в микросекундах: <code>utimes()</code></p>

В разделе 5.5.3 «Изменение временных отметок: utime()» был описан системный вызов utime() для установки времени последнего обращения и изменения данного файла. Некоторые файловые системы хранят эти временные отметки с разрешением в микросекунды (или еще точнее). Такие системы предусматривают системный вызов utimes() (обратите внимание на завершающую s в названии) для установки времени обращения к файлу и его изменения с точностью до микросекунд:

#include /* XSI */

int utimes(char *filename, struct timeval tvp[2]);

Аргумент tvp должен указывать на массив из двух структур struct timeval, значения используются для времени доступа и изменения соответственно. Если tvp равен NULL, система использует текущее время дня.

POSIX обозначает ее как «традиционную» функцию, что означает, что она стандартизуется лишь для поддержки старого кода и не должна использоваться для новых приложений. Главная причина, пожалуй, в том, что нет определенного интерфейса для получения времени доступа и изменения файла в микросекундах; struct stat содержит лишь значения time_t, а не значения struct timeval.

Однако, как упоминалось в разделе 5.4.3 «Только Linux: указание файлового времени повышенной точности», Linux 2.6 (и более поздние версии) действительно предоставляет доступ к временным отметкам с разрешением в наносекунды при помощи функции stat(). Некоторые другие системы (такие, как Solaris) также это делают.[157] Таким образом, utimes() полезнее, чем кажется на первый взгляд, и несмотря на ее «традиционный» статус, нет причин не использовать ее в своих программах.

Перейти на страницу:

Похожие книги

C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных