Нижняя ступень лунного модуля оснащалась одним маршевым двигателем, названным Lunar Module Descent Engine (LMDE). Этот двигатель развивал около 4,6 т тяги и обеспечивал торможение для понижения орбиты и мягкой посадки на Луну. Конструкция двигателя была максимально проста для повышения надежности. На двигателе не было топливной турбины, а подача горючего и окислителя под давлением 7 атмосфер в камеру сгорания поддерживалась сжатым гелием. Охлаждение камеры сгорания и сопла было абляционным, т. е. внутренняя часть просто сгорала в процессе работы двигателя.
Требования к двигателю LMDE отличались одной важной особенностью, которая на тот момент была мало востребована в околоземной космонавтике, – глубоким дросселированием, т. е возможностью контроля тяги. В процессе снижения корабля меняется его масса из-за расхода топлива, поэтому необходимо снижать и тягу. Самая низкая тяга кораблю необходима у самой поверхности: в посадках Apollo она достигала примерно 25 % от максимальной. Для создания двигателя с такими возможностями потребовалась специальная штыревая (иногда встречается наименование «игольчатая») или штифтовая форсунка (pintle injector) подачи топлива. Ее преимуществом является возможность глубокого дросселирования до 10 % мощности двигателя без потери эффективности и без появления нестабильного горения.
Как оказалось, история маленькой форсунки нашла продолжение, в отличие от всего лунного модуля. В 1970–1980-е годы штифтовую форсунку и конструкцию камеры сгорания LMDE применили в ракетном двигателе TR-201 верхней ступени ракеты Delta, и она совершила 77 пусков с этим двигателем, показав стопроцентную надежность. В 1990-е годы штифтовая форсунка применялась в экспериментальном двигателе TR-106, а в начале 2000-х годов – в двигателе TR-107. Но звездный час технологии наступил, когда ведущий разработчик TR-106 Томас Мюллер перешел на работу в компанию SpaceX.
Ракетные двигатели серии Merlin 1 обеспечили компании SpaceX технологический и коммерческий успех. Начав как подрядчик по контрактам NASA, компания SpaceX смогла создать эффективную и достаточно надежную ракету, которая снискала успех и на коммерческом рынке. Falcon 9 запустил десятки телекоммуникационных и картографических спутников. Девять двигателей Merlin 1D поднимают тяжелую ракету Falcon 9, а двадцать семь двигателей поднимают сверхтяжелую ракету Falcon Heavy.
Благодаря «лунной» штифтовой форсунке и глубокому дросселированию двигателя Merlin 1D, первые ступени ракет Falcon 9 и Falcon Heavy обладают возможностями возвращения на Землю и мягкой вертикальной посадки, как когда-то делал лунный модуль. На сегодня стартовало более 80 ракет Falcon 9, и уже многие первые ступени с двигателями Merlin 1D совершили полет неоднократно.
Сегодня ракетные двигатели с использованием такой форсунки разрабатываются целым рядом частных космических компаний: Firefly Aerospace, Virgin Orbit в США, «КосмоКурс» в России и др.
Во времена программы Apollo вторая ступень ракеты Saturn V стала самой мощной ракетной системой на основе топливной пары кислород-водород. До ее создания американская космонавтика имела дело с только водородными двигателями небольшой тяги (до 7 т), а когда работа началась c мощными, то стали возникать непредвиденные проблемы. Кислород и водород лучше всего себя показывают в вакууме, где им практически нет равных, по крайней мере из распространенных химических типов топлива. Поэтому вторая и третья ступени Saturn V и заправлялись кислородом и водородом.
Одной из важнейших проблем, которую создавал жидкий водород в баках, стала его низкая температура кипения – около –253 °C. Жидкий кислород, который широко применяется в космонавтике, имеет температуру кипения около –182 °C. То есть в баках с жидким топливом необходимо поддерживать температуру ниже этого уровня. Свойства, которыми обладают эти жидкости, отличаются, поэтому прежнего опыта работы с криогенными типами топлива инженерам NASA не хватало.
Если наблюдать старт ракеты с жидким кислородом в виде топливного компонента, то можно обратить внимание на белые хлопья, которые осыпаются с ракеты в момент подъема. Это водяной лед, который конденсируется из воздуха и намерзает на бак с холодным жидким кислородом. Ледяная корка на ракете становится хорошей теплоизоляцией, которая мешает кислороду нагреваться и улетучиваться. Значительно более холодный водород вызывает иные эффекты: он практически сжижает окружающий воздух при температуре −190 °С, что все еще теплее жидкого водорода. В результате жидкий воздух начинает стекать по баку с жидким водородом, передавая ему свою температуру и сильнее нагревая горючее. Поэтому бакам с жидким водородом необходима дополнительная теплоизоляция, чего не требуется при использовании жидкого кислорода.
Командный отсек корабля Orion, приводнившийся после испытательного околоземного полета в 2014 году. NASA