Весь стартовый комплекс, созданный по программе Apollo, использовался для пусков ракет Saturn I и Saturn V. Когда в 1975 году полеты этих ракет прекратились, все сооружения перестроили для запусков космических кораблей Space Shuttle.
Space Shuttle были легче и ниже Saturn V, но масса свыше 2000 т также требовала надежных технических средств. Благодаря программе Apollo стартовый комплекс был практически готов для решения такой сверхсложной задачи. После модификации под новую ракетно-космическую систему два стартовых стола исправно служили еще почти 40 лет.
В 2011 году программу шаттлов закрыли и один стартовый стол передали в аренду частной компании SpaceX, а второй стали готовить к стартам новой сверхтяжелой ракеты SLS. При этом основные элементы комплекса – здание вертикальной сборки, гусеничные транспортеры, стартовые столы – модернизируются и продолжают использоваться.
Космическая транспортная система Space Shuttle значительно отличалась от Saturn V и Apollo по своим целям, задачам, идеологии, используемым технологиям. Многое разработчикам приходилось осваивать с нуля, но это были уже опытные разработчики. Программу Space Shuttle создавали практически те же люди, которые сделали реальным полет человека на Луну.
Космические корабли Space Shuttle производила компания Rockwell International, которая сформировалась путем объединения компаний North American Aviation и Rockwell. В программе Apollo эти компании создавали командный и служебный отсек, а также вторую ступень ракеты Saturn V.
Внешний кислород-водородный топливный бак космического челнока разрабатывала компания Lockheed Martin, которая во времена Apollo занималась системой аварийного спасения на ракете Saturn V.
Старт шаттла Discovery в 2007 году. NASA
Главные кислород-водородные двигатели Space Shuttle создавала компания Rocketdyne, что производила кислород- керосиновые двигатели F-1 и кислород-водородные двигатели J-2 ракеты Saturn V.
Твердотопливные боковые ускорители Space Shuttle создавала компания Thiokol – производитель твердотопливного двигателя системы аварийного спасения Apollo.
Только разработчики и производители с богатым опытом создания сложной космической техники могли создать еще более технически и технологически сложную космическую систему Space Shuttle. Челноки начали свою работу с уникального полета, когда с первого раза корабль успешно полетел в пилотируемом режиме – беспилотных испытаний всего космического комплекса Space Shuttle просто не предусматривалось.
Шаттлы привели и к самым трагическим катастрофам в пилотируемой космонавтике, погубив два экипажа суммарной численностью 14 человек, однако эти аварии произошли значительно позже начала серийной эксплуатации кораблей. Советская космонавтика тоже смогла создать многоразовую космическую систему «Энергия» – «Буран», так же успешно стартовавшую с первого раза, лишь пройдя долгий путь разработки ракет, кораблей и космических станций.
У современного поколения сотрудников NASA и американских аэрокосмических компаний нет такого опыта разработки, какой был у создателей Apollo и Space Shuttle. Этим можно объяснить сложности, превышение бюджета и задержки сроков создания современной сверхтяжелой ракеты SLS и межпланетного корабля Orion.
Как удалось достичь высокой надежности полетов людей на Луну?
КРАТКИЙ ОТВЕТ: Надежность полетов обеспечивали обширная программа испытаний на Земле и в космосе, усилия экипажа в решении технических проблем в ходе полета, а также осознание высокой ответственности со стороны разработчиков. Цену ошибки все увидели в 1967 году, когда погиб экипаж Apollo 1.
Выражаю признательность Александре Политовой
и Дмитрию Олиферовичу за помощь в подготовке главыПолеты Apollo стали одной из самых сложных космических программ за всю историю космонавтики. Даже один успешно реализованный полет на Луну с посадкой, выходом на поверхность, поездкой на ровере и успешным возвращением может считаться техническим чудом. А в ходе программы Apollo их осуществилось шесть. Если смотреть по результатам, кажется удивительным, что столько всего удалось совершить на Луне:
● шесть высадок на поверхность;
● посещение космического аппарата Surveyor 3;
● 382 кг доставленного грунта из шести разных регионов Луны;
● три буровые скважины глубиной до 3 м;
● пять размещенных автоматических научных станций длительной работы с сейсмометрами и датчиками внешних условий;
● три установленных лазерных уголковых отражателя;
● 90 км суммарного расстояния, преодоленного по поверхности;
● 14 выходов на лунную поверхность суммарной длительностью 80 часов.