что эквивалентно слою алюминия толщиной 3 см. В краткосрочной экспедиции этого достаточно для защиты не только от солнечного ветра и мягкого солнечного излучения, но и от мощных протонных событий. Даже самая мощная солнечная вспышка за всю историю наблюдений, которая произошла в августе 1972 года (когда на Луне никого не было), привела бы к облучению экипажа суммарной дозой в 280 рад. Это было бы чревато последствиями для здоровья, но NASA на тот момент считало допустимым облучение в 400 рад за время экспедиции.
Даже если бы экипажу Apollo 13 пришлось преодолевать в лунном модуле внутренний радиационный пояс, то к суммарной дозе добавился бы 1 рад. Но астронавты аварийного корабля вернулись в командный модуль до вхождения в радиационные пояса, поэтому доза их облучения в среднем не отличалась от остальных экспедиций, которые не пересекали внутренний радиационный пояс.
Если бы солнечная вспышка настигла астронавтов во время их выхода на лунную поверхность, это стало бы проблемой, но не несло бы прямой угрозы жизни и здоровью. Защита скафандра составляет около 1,4 г на кв. см (не считая ранца системы жизнеобеспечения), а солнечные протонные события можно предсказывать за несколько минут, которых астронавтам хватило бы для эвакуации в корабль. Кроме того, от начала солнечного протонного события до достижения максимума его интенсивности проходит порядка одного часа, что дает дополнительный запас времени на спасение, конечно, только при наличии оперативной связи с наземной службой, отвечающей за радиационную безопасность полета.
Самое главное, солнечные протонные события достаточно редки. По данным европейского Каталога солнечных протонных событий на 1997–2016 годы, их частота достигает 27 событий всех типов в год в пике солнечного цикла и снижается до 10–15 в год уже к середине цикла. Мощность этих событий также различается, и наиболее интенсивные могут происходит всего несколько раз за 11-летний цикл.
Количество солнечных пятен, влияющих на солнечную активность (черная линия), и количество по годам выходов в открытый космос на МКС с 1999 по 2018 годы (серая линия)
Скафандр менее защищен, чем корабль, но если взглянуть на статистику космических выходов с Международной космической станции, то увидим, что высокая солнечная активность не является препятствием для внекорабельной деятельности людей, хотя определенное влияние можно заметить.
Конечно, МКС прикрыта магнитным полем Земли, но это же поле собирает солнечные заряженные частицы в нижний протонный пояс. Он же пополняется вторичной радиацией от возрастающего в солнечный минимум галактического излучения. Протонный пояс подходит к поверхности планеты достаточно близко в районе Южной Бразильской аномалии, чтобы оказывать заметное воздействие на экипажи МКС. Длительность современных выходов в открытый космос – 4–8 часов, т. е. космонавты и астронавты могут несколько раз пересекать в скафандре нижнюю часть протонного пояса за один выход. Суммарный эффект воздействия космической радиации во время современных выходов в открытый космос на низкой околоземной орбите вполне сопоставим с двухчасовой прогулкой на Луне.
МАТЕРИАЛЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ
Биомедицинские результаты полета Apollo в части радиационных эффектов
Результаты измерения радиации эксперимента SilEye-3/Alteino на МКС
Результаты измерения радиации экспериментов «Люлин-5» и «Матрешка-Р» на МКС
Результаты измерения радиации дозиметром эксперимента Van Allen Probes
Результаты измерения радиации дозиметром эксперимента CRaTER LRO
Результаты измерений галактической и вторичной радиации у поверхности Луны эксперимента CRaTER LRO
Результаты измерения радиации дозиметром эксперимента RAD MSL Curiosity