Значительная роль в развитии химии принадлежит английскому ученому Р. Бойлю (1627-1691). Он подвергал сомнению справедливость утверждения о том, что элементы Аристотеля являются истинными элементами различных тел, и впервые в истории науки дал понятие химического элемента как «простого тела, не составленного из других». Это направляло усилия ученых на поиски простых, не разложимых далее элементов. Бойль был убежденным сторонником экспериментального метода исследований и подчеркивал, что только опыт может служить критерием правильности теорий. Он первый открыл в исследованиях газов закон, связывающий давление газа
Позднее этот же закон независимо от Бойля установил Э. Мариотт, и теперь он носит название закона Бойля — Мариотта.
Развивая идеи Бойля, французский химик А. Лавуазье (1743-1794) установил, что воздух — одна из основных «стихий» Аристотеля — не является простым телом, а представляет собой смесь газов. На основании опытов он утверждал, что «стремление считать все тела природы состоящими из трех или четырех элементов происходит от предрассудка, перешедшего к нам от греческих философов». Лавуазье составил первую в истории науки таблицу химических элементов. Естественно, что во многих отношениях она была небезупречной, например наряду с простыми химическими элементами Лавуазье включил в нее глинозем, радикалы кислот и даже два невесомых «флюида» — свет и теплород.
Атомная теория получила свое дальнейшее развитие в трудах английского химика Д. Дальтона (1766-1844). Он дал четкое определение атомного веса элемента как отношения массы атома данного элемента к массе атома водорода, наиболее легкого элемента[1]. Давая оценку этому предложению, Д. И. Менделеев писал: «Благодаря гению Лавуазье и Дальтона человечество узнало в невидимом мире химических сочетаний простые законы того же порядка, каков указан Коперником и Кеплером в видимом планетном мире». Русский ученый-энциклопедист М. В. Ломоносов поддерживал и развивал в своих трудах атомистические представления о строении материи.
Дальнейшее развитие атомистической гипотезы было небезмятежным. В 1808 г. французский ученый Ж. Л. Гей-Люссак открыл закон объемных отношений, согласно которому объемы как участвующих в реакции газов, так и газообразных продуктов реакции находятся в простых кратных отношениях. Это противоречило теории Дальтона, в которой соединялись равные количества атомов, и… Дальтон отказывается признавать закон Гей-Люссака. Но один-единственный факт, не укладывающийся в какую-либо теорию, способен опровергнуть ее.
После открытия Гей-Люссака судьба всей атомной теории вызвала сомнения.
Блестящим подтверждением этих слов может служить гениальная идея итальянского ученого А. Авогадро (1776-1856). В 1811 г. он указал на возможность создания новой теории, объединяющей две существующие теории — Дальтона и Гей-Люссака. Авогадро вводит в науку о строении вещества понятие молекулы — соединения атомов. Удивительное предвидение! Еще под вопросом реальность атомов, а результаты исследований требуют объяснения и находят его в созданной Авогадро молекулярной теории строения вещества.
Важнейшим следствием гипотезы Авогадро является закон, имеющий громадное теоретическое значение, — при одинаковых температуре и давлении равные объемы любых газов содержат одно и то же число молекул! Этот вывод закреплял в науке представление о дискретном, зернистом, строении вещества. Используя данные опытов Дальтона и Гей-Люссака, Авогадро возводит удивительно стройное «молекулярное здание», предсказывая новые, уникальные факты.
Из гипотезы Авогадро вытекает существование постоянного числа молекул в моле[2] любого вещества. Объем V0, который занимает моль любого газа при нормальных условиях, также является постоянным. Этот объем был измерен экспериментально:
Одной из самых первоначальных задач науки стало определение числа молекул NA в 1 моле любого вещества, получившего в дальнейшем название постоянной Авогадро. Зная V0 и
Предположим, что постоянная Авогадро нам известна (о способах ее определения можно узнать в школьных учебниках физики):