Трудно назвать утверждение, которое обосновывалось бы само по себе, в изоляции от других утверждений. Обоснование всегда носит
Подтверждение следствий, вытекающих из теории, является одновременно и подкреплением самой теории. С другой стороны, теория сообщает выдвинутым на её основе положениям определённые импульсы и силу и тем самым содействует их обоснованию. Утверждение, ставшее частью теории, опирается уже не только на отдельные факты, но во многом также на широкий круг явлений, объясняемых теорией, на предсказание ею новых, ранее неизвестных эффектов, на связи её с другими научными теориями и т.д. Включив анализируемое положение в теорию, мы тем самым распространяем на него ту эмпирическую и теоретическую поддержку, какой обладает теория в целом.
Этот момент не раз отмечался философами и учёными, размышлявшими об обосновании знания.
Так, философ Л.Витгенштейн писал о целостности и системности знания: «Не изолированная аксиома бросается мне в глаза как очевидная, но целая система, в которой следствия и посылки взаимно поддерживают друг друга». Системность распространяется не только на теоретические положения, но и на данные опыта: «Можно сказать, что опыт учит нас каким-то утверждениям. Однако он учит нас не изолированным утверждениям, а целому множеству взаимозависимых предложений. Если бы они были разрозненны, я, может быть, и сомневался бы в них, потому что у меня нет опыта, непосредственно связанного с каждым из них». Основания системы утверждений, замечает Витгенштейн, не поддерживают эту систему, но сами поддерживаются ею. Это значит, что надёжность оснований определяется не ими самими по себе, а тем, что над ними может быть надстроена целостная теоретическая система. «Фундамент» знания оказывается как бы висящим в воздухе до тех пор, пока на нем не будет построено устойчивое здание. Утверждения научной теории взаимно переплетены и поддерживают друг друга. Они держатся, как люди в переполненном автобусе, когда подпирают со всех сторон, и они не падают, потому что некуда упасть.
Поскольку теория сообщает входящим в неё утверждениям дополнительную поддержку,
Среди способов прояснения теории особую роль играют выявление логических связей её утверждений, минимизация её исходных допущений, построение её в форме аксиоматической системы и, наконец, если это возможно, её формализация.
При
Аксиоматический метод систематизации и прояснения знания зародился ещё в античности и приобрёл большую известность благодаря «Началам» Евклида — первому аксиоматическому истолкованию геометрии. Сейчас аксиоматизация используется в математике, логике, а также в отдельных разделах физики, биологии и др. Аксиоматический метод требует высокого уровня развития аксиоматизируемой содержательной теории, ясных логических связей её утверждений. С этим связана довольно узкая его применимость и наивность попыток перестроить всякую науку по образцу геометрии Евклида.
Кроме того, как показал логик и математик К.Гёдель, достаточно богатые научные теории (например, арифметика натуральных чисел) не допускают полной аксиоматизации. Это говорит об ограниченности аксиоматического метода и невозможности полной формализации научного знания.
Методологическая аргументация представляет собой обоснование отдельного утверждения или целостной концепции путём ссылки на тот несомненно надёжный метод, с помощью которого получено обосновываемое утверждение или отстаиваемая концепция.