Читаем Логика полностью

В первом случае — в отличие от второго — неясность выражения является просто ошибкой. Отражает она не какую-то трудно выразимую таинственность обсуждаемого предмета, а только неумение говорящего высказаться о нем ясно. Такое неумение только затемняет реальную тайну, если она, конечно, есть, добавляя к ней синтаксические и семантические загадки.

От этих случаев туманности и темноты нужно, разумеется, отличать сознательную, или, как говорят, жанровую, туманность и темноту литературного или иного текста. Литературоведы иногда называют ее "бессвязной речью".

Есть речи — значенье темно иль ничтожно,Но им без волненья внимать невозможно.

В общем случае туманность и темнота — неприятные, хотя зачастую и неизбежные спутники общения с помощью языка. От них желательно по мере возможности избавляться.

Но жанровые туманность и темнота имеют все права появляться в нужное время на удобной для этого сцене.

<p><strong>Глава 7. Логика высказываний</strong></p><p><strong>1. Логический закон</strong></p>

Логика высказываний является теорией тех логических связей высказываний, которые не зависят от внутреннего строения (структуры) простых высказываний.

Логика высказываний исходит из следующих двух допущений:

1. всякое высказывание является либо истинным либо ложным (принцип двузначности);

2. истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.

На основе этих допущений ранее были даны строгие определения логических связок "и", "или", "если, то" и др. Эти определения формулировались в виде таблиц истинности и назывались табличными определениями связок. Соответственно, само построение логики высказываний, опирающееся на данные определения, называется табличным ее построением.

Согласно принятым определениям:

● конъюнкция истинна, когда оба входящих в нее высказывания истинны;

● дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно;

● строгая дизъюнкция истинна, когда одно из входящих в нее высказываний истинно, а второе ложно;

● импликация истинна в трех случаях: ее основание и следствие истинны; основание ложно, а следствие истинно; и основание, и следствие ложны;

● эквивалентность истинна, когда два приравниваемых в ней высказывания оба истинны или оба ложны;

● отрицательное высказывание истинно, когда отрицаемое высказывание ложно, и наоборот.

С помощью таблиц истинности в случае любого сложного высказывания можно определить, при каких значениях истинности входящих в него простых высказываний это высказывание истинно, а при каких ложно.

Логика высказываний — это определенная совокупность формул, т. е. сложных высказываний, записанных на специально сконструированном искусственном языке. Язык логики высказываний включает:

1. неограниченное множество переменных: А, В, С…, А1, В1, С1, представляющих высказывания;

2. особые символы для логических связок: & — "и", v — "или", V — "либо, либо", → — "если, то", ↔ — "если и только если", ~ — "неверно, что""

3. скобки, играющие роль знаков препинания обычного языка. Чтобы использовать меньшее количество скобок, условимся, что операция отрицания выполняется первой, затем идут конъюнкция и дизъюнкция, и только после этого импликация и эквивалентность.

Формулам логики высказываний, образованным из переменных и связок, в естественном языке соответствуют предложения. К примеру, если А есть высказывание "Сейчас день", В — высказывание "Сейчас светло" и С — высказывание "Сейчас холодно", то формула:

АВ v С, или со всеми скобками: v С)),

представляет высказывание "Если сейчас день, то сейчас светло или холодно". Формула:

В & СА, или ((В & С)А),

представляет высказывание "Если сейчас светло и холодно, то сейчас день". Формула:

В → ~ А, или ((~ В)(~ А)),

представляет высказывание "Если неверно, что сейчас светло, то неверно, что сейчас день" и т. п. Подставляя вместо переменных другие конкретные (истинные или ложные) высказывания, получим другие переводы указанных формул на обычный язык.

Формула, которой не соответствует осмысленное предложение, построена неправильно.

Таковы, в частности, формулы:

), (& В), (A v ВС), (~ & ) и т. п.

Каждой формуле логики высказываний соответствует таблица истинности, показывающая, при каких подстановках конкретных высказываний в данную формулу она дает истинное сложное высказывание, а при каких ложное. Например, формула (~ В → ~ А) даст ложное высказывание, только если вместо В подставить ложное высказывание, а вместо А — истинное.

Перейти на страницу:

Похожие книги

Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература