Но из того, что объём субъекта полностью входит в объём предиката, ещё не видно,
В случае, когда объём субъекта целиком входит в объём предиката, но составляет только часть объёма предиката, отношение между понятиями субъекта и предиката может быть представлено следующей схемой (см. рис. 12).
Рис. 12
Здесь большой круг Р означает объём предиката, меньший круг S — объём субъекта. Из схемы видно, что весь объём S целиком входит в объём Р, но составляет только часть объёма Р, так что, кроме S, в объёме Р могут оказаться, в качестве его частей, объёмы других понятий. Во-вторых, объём субъекта может оказаться не частью объёма Р, но может оказаться целиком совпадающим с объёмом Р. Так, в суждении «все квадраты — равносторонние прямоугольники» объём субъекта не только полностью входит в объём предиката, но и полностью исчерпывает объём предиката: не только все квадраты — равносторонние прямоугольники, но кроме квадратов других равносторонних прямоугольников нет.
В случае, когда объёмы S и Р полностью совпадают, отношение между понятиями субъекта и предиката может быть представлено следующей схемой (см. рис. 13).
Рис. 13
Здесь объём S и объём Р представлены одним и тем же кругом SP, т. е. понятия субъекта и предиката оказываются равнозначащими. Не трудно понять, что в этом последнем случае суждение есть не что иное, как
§ 12. В частноутвердительных суждениях о принадлежности предмета классу предметов объём субъекта входит в объём предиката не полностью, но лишь некоторой своей частью. Так, в суждении «некоторые математики были астрономами» объём субъекта (понятие «математики») входит в объём предиката (понятие «астрономы») только в некоторой своей части: не все математики, но лишь часть математиков были астрономы.
Частичная принадлежность объёма субъекта объёму предиката бывает двух видов.
Первый вид образуют суждения, в которых понятия субъекта и предиката — понятия
Рис. 14
Из схемы видно, что какая-то часть объёма S входит в объём Р. Общая обоим кругам часть их поверхности, заштрихованная на рисунке, представляет ту часть объёма субъекта, которая будет у него общей с объёмом предиката.
Второй вид суждений, выражающих частичную принадлежность объёма субъекта объёму предиката, образуют суждения, в которых понятие предиката
Рис. 15
Из этой схемы видно, что объём предиката (круг Р) весь входит в объём субъекта (все ракетные орудия суть орудия), но объём субъекта (круг S) только частью совпадает с объёмом предиката (только часть орудий — ракетные орудия). Заштрихованный на рисунке круг Р, представляющий весь объём предиката, есть та часть объёма субъекта, которая совпадает с предикатом.
§ 13. В общеотрицательных суждениях о принадлежности предмета классу предметов (Е) объём субъекта ни в какой своей части не совпадает с объёмом предиката.
Так, в суждении «ни один герой не может быть трусом» объёмы субъекта и предиката мыслятся один вне другого: ни в числе героев не может быть трусов, ни в числе трусов не может быть героев. Это отношение между объёмами понятий представлено на рис. 16.
Рис. 16
Из этой схемы видно, что в объёме субъекта (круг S) нет ни одной части, которая оказалась бы принадлежащей одновременно объёму предиката (круг Р). И наоборот: в объёме предиката нет ни одной части, которая одновременно принадлежала бы объёму субъекта.