Читаем Логика для всех. От пиратов до мудрецов полностью

1.5. 1) Это не только не высказывание, но и вообще не утверждение. Данное предложение побудительное, а высказывание всегда является повествовательным предложением. Например, «Все умные люди перед тем, как что-либо отрезать, проводят семикратные измерения». Истинность такого высказывания весьма сомнительна.

2) Грамматическая структура этого предложения слишком сложна. При желании можно превратить поэтическую истину в аналогичное по смыслу ложное высказывание «Для того чтобы жить в доме, достаточно его нарисовать». Только зачем?

3) Чтобы превратить это утверждение в высказывание, надо точно указать время и место.

1.7. 1) Да. 2) Нет. Митя и Андрей могут иметь одинаковый рост.

1.8. 1) Достаточно ли заменить дальнюю дорогу на ближнюю? Нет, поскольку завтра королю вообще может быть не суждено никакой дороги. Можно поставить перед глаголом частицу «не»: «Завтра королю не выпадает дальняя дорога». Или сказать так: «Завтра королю либо выпадает ближняя дорога, либо вообще не выпадает дороги».

2) Использование антонима («У него деньжонок мало») вновь приводит к ошибке: денег у него может и вовсе не быть. Спасительное «не» не спасает. Правильное отрицание звучит так: «У него деньжонок мало или совсем нет»

3) Тут все ясно. Любовь либо есть, либо ее нет. Отрицание: «Я денежки не люблю».

1.9. 1) Если контроль за прическами есть, то красить волосы нельзя. Если его отменят, то можно. Но директор возражает против отмены – значит, все же нельзя.

Ответ. Нельзя.

Комментарий. Это утверждение является двойным отрицанием (другими словами, отрицанием отрицания). Истинному утверждению соответствует ложное отрицание и снова истинное двойное отрицание.

2) Если контроль за прическами есть, то красить волосы нельзя. Если решили его запретить, то можно. Если это решение отменить, то снова нельзя. Но директор возражает против отмены – значит, все же можно.

Ответ. Можно.

Комментарий. Здесь отрицание встречается трижды (возражает, отмена, запрет) – т. е. нечетное число раз. Так как пары отрицаний «нейтрализуют» друг друга, то можно считать, что контроль просто отрицается.

1.10. Решение 1. Если бы данное высказывание было истинным, этот критянин был бы лжецом и не мог делать истинных утверждений. Если оно ложное, противоречия нет: этот критянин лжет, но на острове есть другие критяне, которые говорят правду.

Ответ 1. Ложно.

Решение 2. Как доказано в первом решении, эта фраза не является истинным высказыванием. А теперь представьте, что фразу «Все критяне лжецы» сказали все критяне одновременно (например, что говоривший – единственный житель острова). Если это ложное высказывание, то все критяне солгали, что делает каждое высказывание истинным.

Ответ 2. Фразу «Все критяне лжецы», сказанную критянином, вообще нельзя считать высказыванием и обсуждать ее истинность.

Комментарий. В задаче изложен парадокс Эпименида – вариант знаменитого парадокса лжеца. Считается, что греческий философ Филит Косский умер от истощения и бессонницы, пытаясь его разрешить. Чтобы не последовать его примеру, мы избрали простейший путь – исключили из рассмотрения утверждения, говорящие о своей истинности. Более сложная точка зрения изложена в главе о парадоксах книги Рэймонда М. Смаллиана «Как же называется эта книга?».

1.11. 1) Верно отрицание: «Сумма двух двузначных чисел может не быть двузначной». В ошибочности формулировки отрицания «Сумма двух двузначных чисел – не двузначное число» поможет убедиться закон исключенного третьего.

2) Утверждение верно. Его отрицание – «Сумма двух четных чисел может не быть четным числом». Ребята скорее всего скажут «Сумма двух четных чисел может быть нечетным числом». Признаем и такую формулировку допустимой, считая заранее известным, что сумма целых чисел – целое число и что все целые числа либо четные, либо нечетные.

3), 4) Для получения отрицания достаточно заменить «можно» на «нельзя» или «невозможно». В пункте 3 верно утверждение. Например, можно сторону 20 разделить на 4 равных части, а сторону 15 – на 5 равных частей и провести через точки деления прямые, параллельные сторонам. В пункте 4 верно отрицание: площадь исходного квадрата нечетна, а предполагаемых частей – четна.

5) Пусть в школе n учеников. Каждый может иметь от 0 до n – 1 друга – всего n вариантов. Но все эти варианты одновременно реализоваться не могут: если у кого-то n – 1 друг (т. е. он дружит со всеми остальными учениками), то никто другой не может вообще не иметь друзей. Поэтому вариантов меньше, чем учеников, и какой-то вариант соответствует хотя бы двум ученикам.

Перейти на страницу:

Все книги серии Школьные математические кружки

Логика для всех. От пиратов до мудрецов
Логика для всех. От пиратов до мудрецов

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Инесса Владимировна Раскина

Математика

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное