5.9. Первое утверждение верно. Но убедиться в этом не поможет ни один, ни сто примеров многоугольников, требуется общее доказательство. Оно несложно: количество клеточек равно удвоенному количеству доминошек, следовательно, оно четно. Второе утверждение неверно; чтобы это доказать, достаточно привести любой контрпример. Один из них изображен на рисунке справа.
Комментарий. Истинные высказывания в форме следствия доказать на примере нельзя, зато ложные опровергаются с помощью контрпримера. Это неудивительно: ведь следствия могут быть переформулированы как высказывания про всех.
5.10. С точки зрения формальной логики – да, правду. Ведь папоротник не цветет, поэтому утверждение «Человек сорвет цветок папоротника» заведомо ложно. Сложное же высказывание «Если А, то Б» при ложном А истинно независимо от истинности Б.
5.11. Заметим, что из каждого утверждения следует предыдущее (в порядке перечисления). Поэтому если утверждение «Число
5.12. Утверждение «Если на одной стороне карточки написано четное число, то на другой – гласная буква» является ложным лишь в одном случае: если на одной стороне карточки четное число, а на другой – согласная буква. Поэтому надо перевернуть 2 карточки: с числом 4 (на обороте должна быть гласная буква) и с буквой Б (на обороте должно быть нечетное число).
Ответ: 2 карточки.
5.13. Решение 1. В (1) сказано, что если не будет ветра, то будет пасмурная погода без дождя. Но в (3) сказано, что пасмурной погоды без дождя не будет. Значит, будет ветрено. По условию (2) в случае дождя ветра не было бы. Значит, дождя не будет. А по условию (3) и в случае пасмурной погоды не было бы ветра. Значит, будет солнечно.
Ответ. Будет солнечно, ветрено, но без дождя.
Комментарий. Разобравшись, в каком порядке использовать условие, удалось решить задачу коротко. Можно прийти к ответу и менее творчески, методом полного перебора.
Решение 2. Выпишем все 8 возможных (в этой задаче) типов погоды: СВД, СВ
5.14. Примеры Шляпы и Сони действительно показывают разницу между «А ⇒ Б» и «Б ⇒ А». Чтобы в этом убедиться, можно каждую фразу построить более формально, например, «Если я что-то ем, то я это вижу» и т. п.
Пример Зайца можно понимать по-разному. Первое его высказывание может означать «Если я что-то учу, то я этого не знаю» (А ⇒ «не Б»), тогда второе следует понимать как «Если я что-то знаю, то я этого не учу». (Б ⇒ «не А»). Но оба эти высказывания истинны при одном и том же условии: А и Б не должны выполняться одновременно. А это значит, что высказывания «А ⇒ „не Б“» и «Б ⇒ „не А“» равносильны. Иное возможное толкование первого высказывания «Если я чего-то не знаю, то я это учу» («не А» ⇒ Б) соответствует пониманию второго как «Если я чего-то не учу, то я это знаю» (не Б ⇒ А). Эти высказывания также равносильны, поскольку оба оказываются истинными во всех случаях, кроме одного: А и Б оба ложны. Итак, с формальной точки зрения высказывания «Я учу то, чего не знаю» и «Я знаю то, чего не учу» действительно означают одно и то же, и пример Зайца неубедителен. А с точки зрения здравого смысла? «Я учу то, чего не знаю» говорит о любознательности, а «Я знаю то, чего не учу» – о глупой самонадеянности. В чем секрет? Во временах глаголов! «Я учу то, чего не знаю» мы понимаем как «Я сейчас учу то, чего не знал раньше», а «Я знаю то, чего не учу» – как «Я сейчас знаю то, чего не учил раньше». Никаких одинаковых простых высказываний А и Б не наблюдается, и говорить о равносильности составных нет причин.
Комментарий. В оригинальном английском тексте высказывание Зайца, связанное со свободным употреблением времен глаголов в русском языке, отсутствует. Нет его и в переводах на русский язык В. Набокова и Н. Демуровой.
Занятие 6
6.6. Нет.
6.7. 1) Пусть у меня есть единственный друг Петя. Он болеет за «Спартак», но не занимается спортом. А у «Спартака» кроме Пети есть еще один болельщик, Вася, который спортом занимается. Тогда оба условия верны, а вывод – нет.