Читаем Логика для всех. От пиратов до мудрецов полностью

Задача 6. Иа-Иа считает, что у Винни-Пуха хорошее настроение бывает тогда и только тогда, когда Винни-Пух хорошенько подкрепился. Съев всё, что было у Кролика, Винни-Пух застрял в норе, и его настроение сразу испортилось. Прав ли Иа-Иа?

Задача 7. Будем считать, что трава зеленая, а небо голубое. Определите, какие из данных высказываний истинны, а какие ложны:

1) Если трава зеленая, то небо голубое.

2) Если трава зеленая, то небо оранжевое.

3) Если трава оранжевая, то небо зеленое.

4) Если трава оранжевая, то небо голубое.

5) Трава зеленая тогда и только тогда, когда небо голубое.

6) Трава зеленая тогда и только тогда, когда небо оранжевое.

7) Трава оранжевая тогда и только тогда, когда небо зеленое.

8) Трава оранжевая тогда и только тогда, когда небо голубое.

Задача 8. В лесу живут только ляпусики и мордасики. Равносильны ли для обитателей леса три утверждения:

(1) все ляпусики кузявые;

(2) если кто-то некузяв, то он мордасик;

(3) никто, кроме мордасиков, не может быть некузявым?

Задача 9. Объект охраняют пятеро часовых: А, Б, В, Г и Д. При

этом справедливы следующие утверждения:

1) Если А спит, то и Б спит.

2) Хотя бы один из Г и Д спит.

3) Ровно один из Б и В спит.

4) В спит тогда и только тогда, когда спит Г.

5) Если Д спит, то А и Г тоже спят.

Перечислите всех спящих часовых.

Задача 10*. Трех братьев пригласили на день рождения. Всего ожидалось 17 человек. «Вот бы мальчиков было больше, чем девочек», – захотел первый. «Вот бы при любой рассадке по кругу нашлось два мальчика рядом», – захотел второй. «Вот бы при любой рассадке по кругу нашелся гость, сидящий между двумя мальчиками», – захотел третий. Докажите, что все трое хотят одного и того же.

Указание. Докажите равносильность трех утверждений по кругу: 1 ⇒ 2 ⇒ 3 ⇒ 1.

Задача 11*. У профессора есть n утверждений А2,…, Аn. О том, что все эти утверждения равносильны, знает только он. Профессор по очереди дает ученикам для доказательства такие теоремы: AiAj. Нельзя давать теорему, если она следует из ранее доказанных. Какое наибольшее число теорем могут доказать ученики, если: 1) n = 3; 2) n = 4; 3) в общем случае?

Задача 1. Из чисел 1, 2, 3, 4, 5, 6, 7 Незнайка задумал два числа и сообщил Знайке их произведение. Знайка не смог отгадать задуманные числа. Какое произведение мог сообщить Незнайка?

Задача 2. Встретились как-то два математика и разговорились:

А: «У меня трое сыновей».

Б: «Сколько им лет?»

А: «Произведение их возрастов равно 36. А сумма их возрастов равна номеру твоего дома».

Б: «Я все равно не знаю, сколько лет каждому».

А: «Мой старший сын рыжий».

После этого Б смог определить, сколько лет сыновьям А. Сколько же?

Задача 3. За столом сидело несколько жителей острова рыцарей и лжецов. Путешественник спросил каждого про его ближайших соседей. Каждый ответил: «У меня оба соседа – лжецы». Путешественник сказал: «Если бы вас было на одного больше или на одного меньше, я бы смог узнать, сколько среди вас рыцарей. А так не могу». Сколько человек было за столом?

Задача 4. Два мудреца написали на семи карточках числа от 5 до 11. После этого они перемешали карточки, первый мудрец взял себе три карточки, второй взял две, а две оставшиеся карточки они не глядя спрятали в мешок. Изучив свои карточки, первый мудрец сказал второму: «Я знаю, что сумма чисел на твоих карточках четна!» Какие числа написаны на карточках первого мудреца?

Задача 5. Один из двух братьев-близнецов по имени Джон совершил преступление. Известно, что по крайней мере один из близнецов всегда лжет. Судья спросил у братьев по очереди: «Вы – Джон?» Первый ответил: «Да». Второй тоже что-то ответил. После этого судья смог определить, кто из них на самом деле Джон. Определите это и вы.

Задача 6. На острове живут два племени: рыцарей и лжецов. Путешественник встретил двух островитян и спросил одного из них: «Вы оба рыцари?» Тот ответил «да» или «нет». Путешественник не смог определить, кто перед ним, и спросил у того же человека: «Вы из одного племени?» Тот ответил «да» или «нет», и теперь путешественник понял, из какого племени каждый из островитян. Кого он встретил?

Задача 7. Путешественник посетил деревню, каждый житель которой либо всегда говорит правду, либо всегда лжет. Все жители деревни встали в круг лицом к центру, и каждый сказал путешественнику про соседа справа, правдив ли тот. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей составляют лжецы. Определите и вы, чему она равна.

Задача 8. Путешественник на острове рыцарей и лжецов пришел в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.

– Интересно, а сколько среди вас рыцарей? – спросил он.

– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.

– Хорошо. Пусть каждый ответит на вопрос: кто твои соседи? – спросил путешественник.

На этот вопрос все ответили одинаково.

– Данных недостаточно! – сказал путешественник.

Перейти на страницу:

Все книги серии Школьные математические кружки

Логика для всех. От пиратов до мудрецов
Логика для всех. От пиратов до мудрецов

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Инесса Владимировна Раскина

Математика

Похожие книги