Читаем Логика и аргументация: Учебное пособие для вузов. полностью

При некотором навыке процесс вычисления можно ускорить, обратив главное внимание на основную операцию, которая связывает две части формулы. В приведенном примере (табл. 7) достаточно заметить, что ложная импликация возникает при истинном антецеденте и ложном консеквенте. Отсюда легко определить возможные значения х и у в дизъюнкции (х у), а также значения х и z в конъюнкции (х z). Такой сокращенный способ вычисления истинности сложного высказывания основывается на установлении главной логической операции в рассматриваемой формуле.

Законы логики высказываний

Такие законы представляют собой тождественно истинные высказывания, т.е. высказывания, остающиеся истинными при любых значениях входящих в них простых высказываний. В справедливости этого утверждения можно убедиться опять-таки с помощью таблиц истинности. В принципе все тождественно истинные высказывания являются законами логики (или исчисления высказываний). Мы перечислим только основные из них.

Закон тождества: если х, то х, т.е. х -> х.

Закон упрощения: если х и у, то х, т.е. ху->х. То же самое относится к другому конъюнктивному члену: ху-> у

Закон эквивалентности: если из х следует у, а из у следует х, тогда высказывания эквивалентны, т. е. x -> у.

Закон гипотетического силлогизма: если из х следует у, а из у следует z, то из х следует z, т.е.

((x -> y) (y -> z)) -> (x -> z)

Закон двойного отрицания: если из х следует не-х, то отрицание последнего приводит к первоначальному высказыванию:

¬ (¬x) -> x

Законы О. де Моргана дают возможность переходить от конъюнкции к дизъюнкции и, наоборот, от дизъюнкции к конъюнкции. Они служат удобным средством для преобразования высказываний:

а) отрицание конъюнкции высказываний эквивалентно дизъюнкции из отрицаний конъюнктивных членов:

¬ (x y) -> (¬x ¬y)

б) отрицание дизъюнкции эквивалентно конъюнкции отрицаемых членов дизъюнкции:

¬ (x y) -> (¬x ¬y)

Закон "поглощения": конъюнкция или дизъюнкция одинаковых высказываний эквивалентна самому высказыванию, т.е. повторяющийся член "поглощается":

(x x) -> x и (x x) -> x.

Коммутативные законы для конъюнкции и дизъюнкции разрешают перестановку их членов:

(x y) -> (x y) и (x y) -> (y x).

Ассоциативные законы для конъюнкции и дизъюнкции позволяют по-разному сочетать члены, т.е. по-иному расставлять скобки:

x (y z) ( -> x y) z или x (y z) ( -> x y) z.

Закон контрапозиции разрешает прямую импликацию заменять обратной, в результате чего антецедент первой заменяется отрицанием консеквента второй, а ее консеквент - отрицанием антецедента. Проще говоря, при контрапозиции происходит перестановка членов импликации или их контрапозиция, но они берутся с отрицаниями:

(x -> y) (¬ -> y -> ¬x)

Закон противоречия: два противоречащих друг другу высказывания, т.е. высказывание х и его отрицание не-х, не могут быть вместе истинными:

(x ¬x)

Поскольку этот закон запрещает противоречия в рассуждении, то его часто называют также законом непротиворечия, и последнее более правильно.

• Закон исключения третьего: из двух противоречащих друг другу высказываний только одно является истинным. Тогда второе будет ложным и никакой третьей возможности не существует

x ¬x

Все эти законы можно непосредственно проверить с помощью таблиц истинности, но их желательно запомнить, чтобы каждый раз не обращаться к построению таблиц. Можно было бы привести и другие законы, которые иногда применяются в рассуждениях, но они играют значительно меньшую роль. В принципе таких законов может быть бесчисленное множество. Все они должны содержать только переменные и логические постоянные и быть истинными в любой области (универсуме) рассуждения. При этом предполагается, что данная область непустая. В логике высказываний к постоянным относят логические коннекторы (связки), с помощью которых образуются сложные высказывания, а переменными являются простые высказывания.

Все перечисленные выше законы служат основой для правильных рассуждений, ибо опираясь на них, никогда нельзя получить ложного заключения из истинных посылок. Поэтому любое последовательное, непротиворечивое и правильное мышление всегда осуществляется в соответствии с законами логики, сознаем мы это или нет. В то же время среди перечисленных законов необходимо выделить самые основные, которые обычно называются законами логики. К ним относятся законы тождества, противоречия и исключенного третьего, о которых пойдет речь в гл.6.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже