В качестве первого шага рассмотрим отношения между суждениями, которые могут быть представлены как вершины логического квадрата (рис. 8). Обозначим буквой А общеутвердительные суждения (начальная буква греч. Слова affirmo - утверждать), общеотрицательные суждения обозначим буквой Е (первая гласная буква в слове (nego - отрицать), буквой О обозначим частноотрицательные суждения (вторая гласная в слове (nego) и буквой I- частноутвердительные суждения (вторая гласная в слове affirmo). Пользуясь таким квадратом, можно установить различные логические отношения между перечисленными суждениями и выводить частные суждения из общих. Соответственно этому между общими и частными суждениями устанавливается отношение подчинения, которое изображается вертикальными сторонами квадрата. Общеутвердительное и общеотрицательное суждения связаны отношением контрарности (противности), которое изображается верхней горизонтальной стороной квадрата. Каждое из этих общих суждений может быть получено путем логического отрицания другого. Частноотрицательное и частноутвердительное суждение связаны отношением субконтрарности, которое представлено нижней горизонтальной стороной квадрата. Диагонали логического квадрата связывают общеутвердительное суждение с частноотрицательным и общеотрицательное с частноутвердительным суждением.
Обратимся теперь к рассмотрению непосредственных дедуктивных умозаключений традиционной логики.
Превращение является непосредственным выводом, в котором заключение получается путем изменения качества посылки. Если посылка - утвердительное суждение, то в результате превращения оно становится отрицательным суждением. Отрицательное суждение, наоборот, превращается в утвердительное. Например, суждение "Все металлы - проводники электричества" превращается в отрицательное "Ни один металл не является неэлектропроводным". В нашем примере общеутвердительное суждение становится общеотрицательным, что можно представить схемой:
Все А есть В.
________________________
Ни одно А не есть не-В.
Подобным же образом частноутвердительное суждение превращается в частноотрицательное по схеме:
Некоторые В есть С.
Некоторые В не есть не - С.
Аналогично происходит превращение общеотрицательных суждений в общеутвердительные и частноотрицательных - в частноотрицательные, как видно из следующих схем:
Ни одно А не есть В.
_______________________
Все А есть не-В.
Некоторые В не есть С.
________________________
Некоторые В есть не-С.
Как нетрудно заметить, умозаключения во всех этих случаях основываются на законе двойного отрицания и взаимосвязи между кванторами "все" и "некоторые", о которых речь пойдет в следующей главе. Здесь же заметим, что двойное отрицание оставляет качество суждения неизменным. В языковом выражении суждения одно из отрицаний становится отрицанием предиката, поэтому для проверки правильности превращения утвердительного суждения в отрицательное достаточно представить их в символической форме.
Обращение
представляет собой такой вид непосредственного умозаключения, в котором вывод получается путем перестановки предиката посылки на место субъекта, а субъекта - на место предиката. При этом в общем случае происходит уточнение количества суждений. Так, суждение "Все кролики - млекопитающие" обращается в суждение "Некоторые млекопитающие - кролики", поскольку класс млекопитающих гораздо больше подкласса кроликов. Этот вывод мы получаем на основе знания содержания высказываний. Но можно абстрагироваться от этого содержания, заметив, что предикат в таких умозаключениях является распределенным, и потому составляет лишь часть объема субъекта:Все S есть Р.
____________________
Некоторые Р есть S.
Другой вид обращения, называемый иногда "чистым", происходит тогда, когда объемы субъекта и предиката совпадают. С такими случаями мы встречаемся при определении понятий. Так, в суждении "квадрат есть равносторонний прямоугольник" объемы субъекта и предиката одинаковы, так как объемы определяемого и определяющего понятий должны быть соразмерными (см. гл.2).
Противопоставление предикату
- такой вид непосредственного умозаключения, в котором субъектом вывода служит понятие, противоречащее предикату. Например, суждению "Все параллельные на плоскости не пересекаются" противопоставляется суждение "Все непараллельные линии пересекаются". Такой вид умозаключения, как мы уже знаем, можно представить в виде контрапозиции условных высказываний:(S -> P) (¬Р -> -> ¬S).