Читаем Логика: конспект лекций полностью

Отношение категорий внутри понятия подчиняется логическим законам и имеет свою специфику. Так, особенности действия содержания и объема понятия друг на друга отражены в законе обратного отношения содержания и объема понятий. Этот закон основан на логической природе понятий. Взяв два понятия, мы можем заметить, что одно из них шире другого по объему, другое же входит в объем первого. Однако понятие, входящее в объем другого (имеющего, соответственно, меньший объем), в содержании отражает больше признаков, более насыщено ими. Именно это явление положено в основу закона обратной связи, который звучит так: чем шире объем понятия, тем его содержание уже, чем богаче содержание, тем меньше объем. Суть данного закона состоит в том, что чем меньше информации о предмете отражено в содержании понятия, тем шире класс предметов и неопределеннее состав. Например, понятие «самолет» бедно содержанием, но при этом в объем включает самолеты различных видов, фирм и конструкций. Расширяя содержание, мы добавляем еще одно характеризующее слово и получаем понятие «пассажирский самолет». Теперь объем понятия значительно сузился, однако содержит еще значительное количество предметов. Понятие «пассажирский самолет „Боинг“» имеет почти максимально широкое содержание, однако класс предметов, входящий в объем, теперь четко очерчен и немногочислен. Таким образом можно сузить объем понятия за счет расширения его содержания вплоть до одного предмета.

<p>ЛЕКЦИЯ № 7</p><p>Отношения между понятиями</p><p>1. Общая характеристика отношений между понятиями</p>

Окружающий нас мир по своей природе — очень сложная система. Проявляется эта природа в том, что все предметы, которые мы только можем себе представить, всегда находятся во взаимосвязи с какими-либо другими предметами. Существование одного обусловлено существованием другого. Рассматривая отношения между понятиями, необходимо дать определение понятий сравнимых и несравнимых. Несравнимые понятия далеки друг от друга по своему содержанию и не имеют общих признаков. Так, «гвоздь» и «вакуум» будут несравнимыми понятиями. Все понятия, которые нельзя назвать несравнимыми, являются сравнимыми. Они имеют некоторые общие признаки, позволяющие определить степень приближенности одного понятия другому, степень их схожести и различия.

Сравнимые понятия имеют разделение на совместимые и несовместимые. Разделение это проводится исходя из объемов данных понятий. Объемы совместимых понятий совпадают полностью или в части, и содержание этих понятий не имеет признаков, исключающих совпадение их объемов. Объемы несовместимых понятий не имеют общих элементов.

В целях большей наглядности и лучшего усвоения отношения между понятиями принято изображать с помощью круговых схем, называемых кругами Эйлера. Каждый круг обозначает объем понятия, а каждая его точка — предмет, содержащийся в его объеме. Круговые схемы позволяют представить отношение между различными понятиями.

<p>2. Совместимые понятия</p>

Отношения совместимости могут быть трех видов. Сюда входят равнозначность, перекрещивание и подчинение.

Равнозначность. Отношение равнозначности иначе называется тождеством понятий. Оно возникает между понятиями, содержащими один и тот же предмет. Объемы этих понятий совпадают полностью при разном содержании. В этих понятиях мыслится либо один предмет, либо класс предметов, содержащий более чем один элемент. Говоря более просто, в отношении равнозначности находятся понятия, в которых мыслится один и тот же предмет.

В качестве примера, иллюстрирующего отношения равнозначности, можно привести понятия «равносторонний прямоугольник» и «квадрат». В этих понятиях содержится отражение одного и того же предмета — квадрата, значит, объемы этих понятий полностью совпадают. Однако содержание их различно, потому что каждое из них содержит разные признаки, характеризующие квадрат. Отношение между двумя подобными понятиями на круговой схеме отражается в виде двух полностью совпадающих кругов (рис. 1).

Пересечение (перекрещивание). Понятиями, находящимися в отношении пересечения, признаются те, объемы которых совпадают частично. Объем одного, таким образом, частично входит в объем другого и наоборот. Содержание таких понятий будет разным. Схематичное отражение отношение пересечения находит в виде двух частично совмещенных кругов (рис. 2). Место пересечения на схеме для удобства штрихуется. Примером могут служить понятия «селянин» и «тракторист»; «математик» и «репетитор». Та часть круга А, которая не пересечена с кругом В, содержит отражение всех селян — не трактористов. Та часть круга В, которая не пересечена с кругом А, содержит отражение всех трактористов, которые не являются селянами. В месте пересечения кругов А и В мыслятся селяне-трактористы. Таким образом, получается, что не все селяне есть трактористы и не все трактористы являются селянами.

Перейти на страницу:

Похожие книги

История философии: Учебник для вузов
История философии: Учебник для вузов

Фундаментальный учебник по всеобщей истории философии написан известными специалистами на основе последних достижений мировой историко-философской науки. Книга создана сотрудниками кафедры истории зарубежной философии при участии преподавателей двух других кафедр философского факультета МГУ им. М. В. Ломоносова. В ней представлена вся история восточной, западноевропейской и российской философии — от ее истоков до наших дней. Профессионализм авторов сочетается с доступностью изложения. Содержание учебника в полной мере соответствует реальным учебным программам философского факультета МГУ и других университетов России. Подача и рубрикация материала осуществлена с учетом богатого педагогического опыта авторов учебника.

А. А. Кротов , Артем Александрович Кротов , В. В. Васильев , Д. В. Бугай , Дмитрий Владимирович Бугай

История / Философия / Образование и наука