Что касается дихотомического деления, то по сравнению с делением по видоизменению признака оно имеет ряд преимуществ. В дихотомии не надо перечислять все виды делимого рода: мы выделяем один вид, а затем образуем противоречащее понятие, в которое включаются все другие виды. Членами дихотомического деления являются два противоречащих понятия, исчерпывающих весь объем делимого понятия. Поэтому деление всегда соразмерно. Деление производится только по одному основанию — в зависимости от наличия или отсутствия у предметов некоторого признака. Члены дихотомического деления всегда исключают друг друга; любой предмет может мыслиться только в одном из противоречащих понятий.
Особым видом деления является классификация
, представляющая собой распределение предметов по группам (классам), при котором каждый класс имеет свое постоянное, определенное место.Целью классификации является систематизация знаний, поэтому от деления она отличается относительно устойчивым характером и сохраняется более или менее длительное время. Кроме того, классификация образует развернутую систему, где каждый член деления вновь делится на новые члены, разветвляясь на множество классов, закрепляемых обычно в таблицах, схемах, кодексах и т. п.
Такова, например, классификация животных в биологии, охватывающая до 1,5 млн. различных видов, растений в ботанике, включающая 500 тыс. видов. Классификация дает возможность рассмотреть это многообразие в определенной системе, выделить интересующие нас виды растений или животных.
Широко применяется классификация в правовых науках. Примером может служить система права, которая включает отрасли: государственное право, финансовое право и т. д. Каждая отрасль права включает в себя правовые институты.
Вместе с тем всякая классификация относительна. Многие явления природы и общественной жизни не могут быть отнесены безоговорочно к какой-либо определенной группе явлений. Например, семью как общественно-историческое явление нельзя целиком отнести к какой-либо одной области социальной жизни, семья характеризуется как материальными, так и духовными процессами. Кроме того, с развитием знаний классификация, как правило, изменяется, дополняется, иногда заменяется новой, более точной. Поэтому ни к одной классификации нельзя подходить как к завершенной. Необходимо учитывать, что и сама действительность, и знания о ней находятся в непрерывном процессе изменения и развития.
1. Что такое деление понятия?
2. Как строится деление по видообразующему признаку и дихотомическое деление?
3. Каким правилам подчиняется операция деления понятия?
4. Что представляет собой классификация?
§ 4. ОПЕРАЦИИ С КЛАССАМИ
При помощи логических операций из двух или нескольких классов могут быть образованы новые классы. К этим операциям относятся: объединение классов, вычитание классов, пересечение классов и образование дополнения к классу.
В операциях с классами приняты следующие обозначения: А, В, С
,... — произвольные классы, 1 — универсальный класс, 0 — нулевой (пустой) класс, символ обозначает объединение классов (сложение), символ — пересечение классов (умножение), А' (не-А) — дополнение к классу А (отрицание). В операциях с классами обычно используются круговые схемы, универсальный класс обозначается прямоугольником.Операция объединения классов (сложение)
состоит в объединении двух или нескольких классов в один класс, состоящий из всех элементов, входящих в слагаемые классы.Операция объединения классов записывается с помощью символа сложения А В
. Множество, полученное в результате сложения, называется суммой (на схеме полученное множество заштриховано).Складывать можно множества, находящиеся в любых отношениях, например, множества, входящие в понятия, находящиеся в отношении подчинения: «юрист» (В
) и «следователь» (А). Множество, полученное в результате сложения, включает юристов-следователей и юристов- неследователей (схема 14). Объединяя классы, находящиеся в отношении частичного совпадения: «юрист» (А) и «депутат Государственной Думы» (В), — получим множество, объединяющее юристов-недепутатов (1), юристов-депутатов (2) и депутатов-неюристов (3) — схема 15.Операция вычитания классов
дает класс, состоящий из элементов, исключающих элементы вычитаемых классов. Вычитая, например, элементы класса «следователь» (А) из класса «юрист» (В), получаем класс юристов-неследователей (схема 16). Вычитая элементы класса «юрист» (А) из класса «депутат Государственной Думы» (В), получаем класс депутатов Государственной Думы, не являющихся юристами. Множество, полученное в результате вычитания классов, заштриховывается (схема 17).