2. Суждение – это форма мышления, которая состоит из понятий, связанных между собой и что-либо утверждает или отрицает (примеры суждений:
3. Умозаключение – это форма мышления, в которой из двух или нескольких исходных суждений вытекает новое суждение или вывод. Примеры умозаключений:
или
Весь бесконечный мир наших мыслей выражается в понятиях, суждениях и умозаключениях. Об этих трех формах мышления мы будем подробно говорить на других страницах книги.
Помимо форм мышления логика также занимается законами мышления, то есть – такими правилами, соблюдение которых всегда приводит рассуждение, независимо от его содержания, к истинным выводам и предохраняет от ложных (при условии истинности исходных суждений). Основных законов мышления (или законов логики) четыре. Здесь только перечислим (назовем) их, а подробно рассмотрим каждый из них после того, как рассмотрим все формы мышления.
1. Закон тождества.
2. Закон противоречия.
3. Закон исключенного третьего.
4. Закон достаточного основания.
Нарушение этих законов приводит к различным логическим ошибкам, как правило, – к ложным выводам. Иногда эти законы нарушают непроизвольно, не нарочно, по незнанию. Возникающие при этом ошибки называются паралогизмами. Однако иногда это делают преднамеренно, с целью запутать собеседника, сбить его с толка и доказать ему какую-нибудь ложную мысль. Такие преднамеренные нарушения логических законов для внешне правильного доказательства ложных мыслей называются софизмами, о которых речь впереди.
Итак, логика – это наука о формах и законах правильного мышления.
Логика появилась приблизительно в V в. до н. э. в Древней Греции. Ее создателем считается знаменитый древнегреческий философ и ученый Аристотель (384–322 гг. до н. э.). Как видим, логике 2,5 тысячи лет, однако она до сих пор сохраняет свое практическое значение. Многие науки и искусства Древнего мира навсегда ушли в прошлое и представляют для нас только «музейное» значение, интересны нам исключительно как памятники старины. Но некоторые немногие создания древних пережили века, и в настоящее время мы продолжаем ими пользоваться. К их числу относится геометрия Евклида (в школе мы изучаем именно ее) и логика Аристотеля, которая также часто называется традиционной логикой.
В XIX веке появилась и стала быстро развиваться символическая или математическая, или современная логика, в основе которой лежат идеи, выдвинутые задолго до Х1Х в. немецким математиком и философом Готфридом Лейбницем (1646–1716 гг.), об осуществлении полного перехода к идеальной (т. е. совершенно освобожденной от содержания) логической форме при помощи универсального символического языка, аналогичного языку алгебры. Лейбниц говорил о возможности представить доказательство как математическое вычисление. Ирландский логик и математик Джордж Буль (1815–1864 гг.) истолковал умозаключение как результат решения логических равенств, в результате чего теория умозаключений приняла вид своеобразной алгебры, отличающейся от обычной алгебры лишь отсутствием численных коэффициентов и степеней. Таким образом, одно из основных отличий символической логики от традиционной заключается в том, что в последней при описании правильного мышления используется обычный, или естественный язык; а символическая логика исследует тот же предмет (правильное мышление) с помощью построения искусственных, специальных, формализованных языков, или, как их еще называют, исчислений.
Традиционная и смволическая логика не являются, как может показаться, различными науками, а представляют собой два последовательных периода в развитии одной и той же науки: основное содержание традиционной логики вошло в символическую, было в ней уточнено и расширено, хотя многое при этом оказалось переосмысленным.