Читаем Логико-философский трактат полностью

5. 524. Если даны объекты, то тем самым уже даны все объекты. Если даны элементарные предложения, то тем самым также даны все элементарные предложения.

5. 525. Неправильно передавать предложение « ($x). fх» словами «fx возможно», как это делает Рассел. Несомненность, возможность или невозможность положения вещей выражаются не предложением, но тем, что выражение есть тавтология, осмысленное предложение или противоречие. Тот прецедент, на который постоянно могли бы ссылаться, должен наличествовать уже в самом символе.

5. 526. Можно полностью описать мир при помощи вполне обобщенных предложений, т. е. не согласовывая заранее какое-либо имя с определенным объектом. Чтобы затем перейти к обычному способу выражения, нужно просто к выражению «имеется один и только один х, который...» прибавлять: «и этот х есть а».

5. 5261. Вполне обобщенное предложение является составным, как и любое другое предложение. (Это проявляется в том, что мы в « ($х, Ф). Фх» должны упоминать «Ф» и «x» раздельно. Оба независимо стоят в отношениях обозначения к миру, как и в необобщенном предложении.) Охарактеризуем составной символ: он имеет нечто общее с другими символами.

5. 5262. Ведь истинность или ложность каждого предложения меняет нечто в общей структуре мира. И пространство, которое оставляется его структуре совокупностью элементарных предложений, есть как раз то, которое ограничивается вполне общими предложениями. (Если истинно какое-либо элементарное предложение, то тем самым во всяком случае истинно еще одно элементарное предложение.)

5. 53. Тождество объектов я выражаю тождеством знаков, а не с помощью знака тождества. Различие объектов – различием знаков.

5. 5301. Очевидно, что тождество не есть отношение между объектами. Это становится совершенно ясным, если, например, рассмотреть предложение: « (х) : fx. É. х = а». Это предложение говорит просто то, что только а удовлетворяет функцию f, а не то, что только такие вещи удовлетворяют функцию f, которые имеют определенное отношение к а. Можно, конечно, теперь сказать, что как раз только а имеет это отношение к а, но, чтобы выразить это, мы нуждаемся в самом знаке тождества.

5. 5302. Расселовское определение «==« не годится, так как согласно ему нельзя сказать, что два объекта имеют общими все свойства. (Даже если это предложение никогда не верно, оно все же имеет смысл.)

5. 5303. Между прочим: сказать о двух предметах, что они тождественны, бессмысленно, а сказать об одном предмете, что он тождествен самому себе, значит ничего не сказать.

5. 531. Следовательно, я не пишу «f (a, b). a == b», но «f (а, а)» (или «f (b, b) «). И не «f (а, b). ~ а == b», но «f (а, b)».

5. 532. И аналогично: не « ($х, y).f (х, у). х == y», но ($х).f (x, x) «; и не « (, у). f (x. y). ~ х = у», но « ($х, y).f (х, у)».

(Следовательно, вместо расселовского « ($х, y).f (х, у) «:« ($х, y).f (х, у)». V « ($х).f (х, x)».)

5. 5321. Вместо «(х) : fх х == а» мы, следовательно, пишем, например, « ($х).f (х, у)». : ~ ($х, y). fх fу». А предложение «только один х удовлетворяет f ()» гласит: « ($х).fx: ~ ($х, y).fx. fy».

5. 533. Следовательно, знак тождества не является существенной составной частью логической символики

5. 534. И теперь Мы видим, что псевдопредложения, как «а==а», «а= Ь. Ь = с. É а ==с», « ($). х == х», « ($х). х == о» и т. д., в правильной логической символике даже не могут быть написаны.

5. 535. Тем самым исчезают и все проблемы, связанные с подобными псевдопредложениями. Здесь уже решаются все проблемы, связанные с расселовской «аксиомой бесконечности». То, что должна высказать аксиома бесконечности, могло бы выразиться в языке тем, что имеется бесконечно много имен с различным значением.

5. 5351. Существуют определенные случаи, когда возникает искушение употребить выражение вида «а =а» или «рÉр» и тому подобные. Это происходит именно тогда, когда хотят говорить о прообразе: предложение, вещь и т. д. Так, Рассел передал в «Принципах математики» («Principles of Mathematics») бессмыслицу «р есть предложение» в символах посредством «рÉр» и принял ее как гипотезу для определенных предложений, чтобы показать, что места их аргументов могут быть заняты только предложениями. (Ставить гипотезу рÉрперед предложением, чтобы его аргументам обеспечить правильную форму, уже потому бессмысленно, что эта гипотеза для не-предложения как аргумента является не ложной, «о бессмысленной, и потому, что само предложение с аргументами неправильного вида является бессмысленным и, следовательно, предохраняет себя от неправильных аргументов столь же хорошо или столь же плохо, как и бессмысленная гипотеза, предназначенная для этой цели.)

Перейти на страницу:

Похожие книги