Для изучения законов наследования Морган впервые использовал дрозофилы или мелкие плодовые мушки. Почему же именно мушки стали излюбленным объектом генетических исследований в сотнях лабораторий? Их легко раздобыть, они водятся повсеместно. Питаются соком растений, всякой плодовой гнильцой. Скорость размножения дрозофил огромна: от яйца до взрослой особи — десять дней. У них мало хромосом — всего четыре пары. В клетках слюнных желез мушиных личинок содержатся гигантские хромосомы, которые особенно удобны для исследований. Для генетиков важно и то, что дрозофилы подвержены частым наследственным изменениям. У дрозофилы было обнаружено большое количество разнообразных мутаций, т. е. форм, характеризующихся различными наследственными признаками. У нормальных, или, как говорят генетики, дрозофил дикого типа, цвет тела серовато-желтоватый, крылья серые, глаза темного кирпичнокрасного цвета, щетинки, покрывающие тело, и жилки на крыльях имеют вполне определенное расположение. У обнаруживавшихся время от времени мутантных мух эти признаки были изменены: тело, например, было черное, глаза белые или иначе окрашенные, крылья зачаточные и т. д. Часть особей несла не одну, а сразу несколько мутаций: например, муха с черным телом могла, кроме того, обладать зачаточными крыльями. С помощью мушки генетика к настоящему времени сделала множество открытий. Известность дрозофилы столь велика, что на английском языке издается ежегодник, ей посвященный, содержащий обильную разнообразную информацию. За выдающиеся работы в области генетики Морган был удостоен в 1933 году Нобелевской премии.
Мутагенное (ведущее к изменению последовательностей нуклеотидов в ДНК ― искусственные мутации Г. Мёллера) действие внешних факторов (лучей рентгена) было открыто в 1925-27 годах. Тогда же было предложено строить хромосомные карты.
На вопрос о механизме воспроизведения генов впервые попытался ответить перед войной Н. К. Кольцов (1872–1940) в гипотезе о молекулярной организации хромосом. Он считал, что хромосома — это гигантская белковая молекула, состоящая из двух нитей, снизанных из параллельных рядов химических радикалов, расположенных в определенном порядке. По обеим сторонам этих нитей кристаллизуются дочерние нити из радикалов, «плавающих» в окружающем веществе. Такое строение нитей и процесс их образования обеспечивают определенную закономерность в передаче наследственного материала дочерним клеткам в процессе деления.
Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. В 1928 г. Ф. Гриффит и О. Эйвери обнаружили, что наследственные признаки определяются именно ДНК. Одно из решающих доказательств принесли эксперименты О. Эйвери с соавторами (128) по изменению свойств бактерий трансформации бактерий.
Они обнаружили, что приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий обусловлено выделенной из пневмококков ДНК (18). В 1944 г. исключительная роль нуклеиновых кислот, а точнее ДНК, в передаче наследственной информации было подтверждена Ч. Мак-Леодом и М. Мэк-Кэрти.
В конце 40-х гг. были получены данные о равномерном содержании ДНК во всех клетках организма и о том, что количество ДНК у разных видов постоянно. В 1952 году было открыто явление трансдукции, то есть переноса вирусами генов хозяина, что доказало роль ДНК в осуществлении наследственности.
2.6. ПОДМЕНА ФОРМАЛЬНОЙ ГЕНЕТИКИ МОЛЕКУЛЯРНОЙ БИОЛОГИЕЙ
Лишь в начале 50-х гг. были определены химические компоненты ДНК. В 1953 г. Ф. Крик и Дж. Уотсон расшифровали трехмерную структуру молекулы ДНК (Нобелевская премия 1962 г.). Они доказали, что ДНК ― это линейная двухнитевая молекула. Так появилась знаменитая спиральная модель ДНК. Стала понятной роль нуклеиновых кислот ДНК и РНК — дезоксирибонуклеиновой и рибонуклеиновой. Стало понятно, что эти вещества не уступают по своей сложности белкам. Началась расшифровка генетического кода. На смену феноменологической формальной генетике пришла молекулярная биология. После того, как они опубликовали структуру молекулу ДНК, Крик говорил всем, что они в Уотсоном нашли секрет жизни.
Однако окончательно идея о роли ДНК как носителя наследственной информации стала общепринятой лишь в 1955 г.
В 1953 г американский генетик С. Бензер, исследуя особенности рекомбинации между двумя различными мутантами бактериофага Т4, одновременно заражавших кишечную палочку Escherichia coli, установил, что ген ― это линейная структура, кодирующая синтез одного полипептида, а функциональный белок может состоять из нескольких полипептидов.
В 1954 г. на основании данных о структуре ДНК американский физик русского происхождения Гамов сформулировал первое представление о генетическом коде: информация, необходимая для синтеза белка, закодирована в структуре ДНК, а сам код — структура, переводящая последовательность нуклеотидов в последовательность аминокислот.