Ещё Дарвин называл некие гипотетические элементы, передающие наследственные свойства, геммулами (единицами пангенеза по его теории пангенеза). Мендель назвал эти единицы элементами. Вейсман называл их детерминантами. В 1889 г. ещё до своего переоткрытия "законов Менделя" Де Фриз назвал эти элементы пангенами. В 1889 г ДеФриз опубликовал книгу "Внутриклеточный пангенез", в которой он постулировал, что каждый признак имеет свой наследственный переносчик в процессе наследования. Он особенно выделил, что наследование специфических признаков в организме происходит посредством неких частичек. Он назвал эти частички пангены (это было за 20 лет до предложения Йогансена назвать их эти частички генами). Для поддержки своей гипотезы о пангенах он провел серию экспериментов по скрещиванию. Для объяснения он использовал те же самые идеи о доминантности, рецессивности, сегрегации признаков и независимой их сортировке. В своих экспериментах он получил во втором поколении то же самое расщепление 3 к 1, что и Мендель. Пангены были ответственны за отсутствие волосков двух различных видов цветов. Его эксперименты вроде бы подтверждали гипотезу, что внешние черты организма наследуются так же, как если бы они кодируются отдельными частичками. Де Фриз предположил, что пангены могут проходить через специфические барьеры, что пангены переходят из одного организма в другой через физические барьеры. Сейчас это считается верным для горизонтального переноса генов.
Наконец, чтобы объединить все эти названия Йохансен (Johannsen) ввел термин ген. Это слово использовалось для единичных элементов, факторов, или аллеломорфов в гаметах. Йохансен понимал, что за словом ген в то время не стояло ничего существенного, но он считал, что слов ген имеет смысл и в реальности, особенно в рамках Менделизма. Слово "ген" возникло после слова "генетика", и означало некие гипотетические шарики диаметром несколько микрометров, в которых содержится некое неизменяемое от внешних воздействий наследственное вещество. Именно Моргану гены представлялись как шарики на бусах.
"А. Гаррод ― пишет Вельков (16) ― обнаружил, что алкаптонурия вызывается повреждением одного рецессивного гена и что болезнь проявляется, согласно анализу родословных, когда мутантный аллель находится в гомозиготном состоянии. Отсюда был сделан вывод, что повреждение одного гена вызывает отсутствие одной биохимической реакции. А раз биохимические реакции катализируются ферментами, то ген предопределяет наличие активного фермента. А отсюда рукой подать до вывода "один ген — один фермент". Но он был сделан только через 30 лет".
В 1940 г Дж. Бидл и Э. Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований ― у микроскопического грибка Neurospora crassa. Ими были получены мутации, у которых отсутствовала активность того или иного фермента метаболизма. А это приводило к тому, что мутантный гриб был не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду.
Сформулированная Дж. Бидлом и Э. Татумом теория "один ген ― один фермент" ― быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.
Ещё в 1933 г. Морган заметил, что среди генетиков нет согласия насчет того, являются ли гены реалиями или это чистая фантазия. Для самого Моргана гены являлись биологическими аналогами молекул и атомов в химии и физике. Ученик Моргана Мюллер считал, что гены ― основа жизни, а не только фундаментальные, но гипотетические единицы наследования.
В 1935 г. Джордж Бидл и Борис Эфрусси изучали, как мутации в генах плодовых мушек дрозофил влияют на окраску их глаз и обнаружили, что различные мутации приводят к прекращению синтеза различных предшественников в пути биосинтеза глазного пигмента. Был сделан вывод: в норме гены обеспечивают наличие ферментов, осуществляющих биохимические реакции.
Только в 1944 г. Эйвери, Мак-Леод и Мэк-Кэрти (128) доказали, что ДНК является носителем наследственной информации в пневмококках. ДНК определяла биохимическую активность пневмококков и их специфические черты. Но в то время бактериям вообще отказывалось в праве иметь наследственную информацию, так как в них нет хромосом. Более того, в то время не все были убеждены, что то же самое имеет место быть в мире растений и животных.
В начале 40-х годов появилась гипотеза о том, что один ген ― один фермент (41, 132). Изучение многочисленных биохимических мутантов нейроспоры (Дж. У. Бидл и Э. Л. Тейтем, США) привело к выдвижению важного положения: "один ген — один фермент" (ныне это положение более точно формулируется так: "один ген — одна полипептидная цепь; далее я покажу, что и эта концепция оказалась ложной).