Итак, клетка быстро распознает те белки, которые не используются. Если белки работают, то они большую часть времени проводят в составе белковых комплексов, если белки не работают, то их, после маркирования специальной меткой, разрушает система протеосом. Если ненужные белки не убирать, то эффект будет такой же, как внедрение в геном добавочного гена или убирание одного гена из генома. Как видим, и здесь для реализации функции отдельно взятого гена требуется координированное участие сотен и тысяч других генов.
Если в качестве аналогии генома брать оркестр в целом, а в качестве аналогии белка ― звуковые фразы, то посттрансляционная модификация белка аналогична прохождению звука через усилители.
Таким образом, сама по себе информация, записанная в генах (термин используется условно) не несет полной информации даже о самом белке. Она становится полной только в рамках всего генома, после обработки синтезированной полипептидной цепи другими белками и переноса полученного белка с помощью других белков в нужное для его функционирования место.
5.6. ГЕНОТИП И ФУНКЦИЯ БЕЛКОВ
Имеется разрыв между пониманием, зачастую до мелких деталей, молекулярных механизмов работы белковых машин и общим пониманием физиологии процесса наследования, процессов транспорта. За последние несколько лет они расшифровали полные последовательности ДНК геномов множества организмов. В 2009 году список живых существ, генетический паспорт которых появился у ученых, пополнили лошадь, корова, сорго, картофель и кукуруза. Само по себе клонирование и идентификация нового белка ничего не даёт. Нужно установить его функцию.
После того, как ученые расшифровали геном, то есть полную последовательность нуклеотидов во всей ДНК человека и ряда других организмов, встал вопрос, а что делать дальше. Думалось, что наличие данной информации резко ускорит развитие молекулярной биологии. На самом деле этого не произошло. А дело в том, что пока никто не знает точных механизмов работы даже отдельно взятой клетки, не говоря уже о том, как развивается во время эмбриогенеза сложнейший многоклеточный организм. Наверное, единственный крупный результат программы по расшифровке ДНК у человека ― это тот факт, что теперь достаточно легко идентифицируются белки, задействованные в различных заболеваниях и при различных экспериментальных воздействиях.
Хотя геном человека в целом и расшифрован, но ещё остаётся несколько регионов, которые считаются незаконченными. Прежде всего, это центральные регионы каждой хромосомы, известные как центромеры, которые содержат большое количество повторяющихся последовательностей ДНК. Центромеры имеют длину миллионы (возможно десятки миллионов) пар нуклеотидов их сложно секвенировать (расшифровывать последовательность нуклеотидов) при помощи современных технологий. Последовательность нуклеотидов на концах линейных хромосом (в теломерах) также состоящие из повторяющихся последовательностей, и по этой причине в большинстве из 46 человеческих хромосом их расшифровка не завершена. Существующие технологические ограничения препятствуют их секвенированию. Кроме того, в геноме каждого индивидуума есть несколько локусов, которые содержат много семейств множественных генов, которые также сложно расшифровать с помощью основного на сегодняшний день метода фрагментирования ДНК. В частности, эти семейства кодируют белки, важные для иммунной системы. Кроме перечисленных регионов, остаётся ещё несколько брешей, разбросанных по всему геному, некоторые из которых довольно крупные, но есть надежда, что все они будут закрыты в ближайшие годы.
Далее, думалось, что наличие генотипа позволит быстренько найти ингибиторы белков, ответственные за развитие наследственных болезней человека и человечество получит горы лекарств от всех болезней. Но и эти мечты не сбылись. Да, белки идентифицированы, но чтобы сделать лекарство, надо знать все о том, как этот белок транспортируется и как работает в клетке, а здесь снова обнаружились проблемы. Как и в случае формальной генетики, исследователи столкнулись с догмами. Например, до сих пор любая статья о транспорте белков в клетке начинается с фразы, "как известно, белки транспортируются с помощью везикул". Но уже давно установлено, что это не верно, но ничего не меняется. Без знания механизмов транспорта и способов образования органелл в разных клетках организма создать эффективных лекарств не удастся.