К тому времени, когда наиболее многогранные толкователи чисел выработали собственные теории истины и материального мира, плебейские прародители блестящих доктрин конкретных философов-аристократов были уже преданы забвению. Некогда пользовавшаяся заслуженным уважением арифметика стала достоянием математиков и ученых. Одновременно старая магия чисел попала в руки искренних, но впавших в заблуждение фанатиков, чьи помыслы были, без сомнения, праведны, но чьи жреческие подтасовки обычной арифметики едва ли сильно отличались от простого шарлатанства.
В XVII веке, ознаменовавшем прорыв науки, опирающейся на опыт, древняя магия чисел существенно утратила былую популярность. Позднее нумерология практически совсем исчезла из философии, хотя Кант в конце XVIII века частично вернулся к ней, а спустя полвека крайне прогрессивный Комт почти потерялся в превратностях нумерологии. То, что от нее осталось, буйно расцвело на ниве предсказаний удачи. Более странное применение едва ли можно было придумать. Но нумерология не
пропала окончательно. Совсем неожиданно в третьем десятилетии ХХ века заблиставшая и набравшая уважение в ослепительной символике новой физики, древняя нумерология вновь вернулась к полноценной жизни. Число «взяло в свои руки бразды правления» в изучении бескрайнего и обширного космоса, превосходящего ограниченные рамки небес, которые Пифагор и Платон могли вообразить. Выполнив резкий разворот, современные последователи Пифагора устремились назад, дабы поприветствовать своего учителя и воздать ему должное.
Глава 2
Жезл фараона
Пока для большинства людей стояла задача поиска пропитания, одежды и крова, только наиболее стойкие находили время задуматься о роли человека в этом мире. Вот почему совсем неудивительно обнаружить доминирование прагматического подхода в большинстве ранних работ в области чисел среди существующих письменных свидетельств. Например, египетский земледелец, живший пять или шесть тысяч лет тому назад, должен был знать, когда следует ожидать ежегодного разлива в долине Нила, и для этого ему требовался заслуживающий доверия календарь.
Даже самый примитивный календарь предполагает знакомство с числами, более глубокое, чем демонстрируют самые лучшие из обыкновенных людей. Искусство счета сформировалось не за один день, а многие из полуцивилизованных сообществ так и остановились на цифре десять в попытках пересчитать свои пожитки. Для этих людей все числа свыше полудюжины или около того сливались в единое целое и таяли в бесчисленном множестве. Такие количества имели не большее практическое значение для бездомного кочевника, чем понятие бесконечности – для бухгалтера с Уолл-стрит.
Вместо современного математического понятия «бесконечность» мудрец из небольшого сообщества ограничивался при подсчете расплывчатым определением «много». Этого было вполне достаточно для его магических предсказаний: различие между нищетой и изобилием вполне покрывалось разницей между шестью и десятью, а значимое неизвестное лежало в области между десятью и пятнадцатью. Скорее на глаз, чем путем рассуждений, предсказатель, мало чем отличавшийся от скотовода, определял, имеет ли сообщество достаточно или обладает лишним.
Маловероятно, что мы в один прекрасный день узнаем, когда, где или как человечество научилось не задумываясь считать с легкостью цивилизованного семилетнего ребенка. Едва ли сумеем установить, какие народы первыми освоили искусство счета в полном объеме.
Опираясь только на достоверные факты, можно определенно утверждать, что к 3500 году до н. э. египтяне значительно переросли примитивную неспособность уверенно оперировать большими числами. На жезле фараона тех лет зафиксировано пленение 120 000 человек, захват 400 000 волов и 1 422 000 коз. Эти очень впечатляющие округленные числа предполагают одно из двух. Либо победивший фараон имел богатое воображение и раздутое эго, либо египетские счетоводы были обучены подсчету больших множеств.
Но даже это замечательное умение, как и другие, не менее значимые, не свидетельствует о том, что египтяне за 3500 лет до н. э. знали – последовательность чисел 1, 2, 3, 4, 5… действительно бесконечна. Они вполне могли без должной уверенности полагать, что всегда найдется число, которое будет на единицу больше любого представляемого числа, но они не оставили о том никаких письменных свидетельств. Наоборот, все наши знания о египтянах говорят о том, что египтяне могли полагать, что числа 1, 2, 3… где-то, когда-то достигают своего конца. Должен был случиться рывок мысли более существенный, чтобы концепция бесконечности счета была признана в математике и философии.