Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Другие же, более приземленные, в попытках обнаружить любые присущие ограничения, которым подчинена определенная система дедуктивного умозаключения, достигают следующих неожиданных выводов. В любой дедуктивной системе, достаточно инклюзивной, чтобы принимать арифметику натуральных чисел, «неразрешимые» утверждения могут быть построены. Утверждение считается «неразрешимым» в отдельно взятой специфической системе, если ни его правдивость, ни его ошибочность не может быть доказана любым способом в пределах этой системы. Существование неразрешимых утверждений обосновывается их демонстрацией и доказательством, что они являются неразрешимыми. Это не вопрос неспособности доказать или опровергнуть некоторые утверждения из-за элементарного недостатка мастерства. Никто и никогда не сможет доказать или опровергнуть неразрешимое утверждение.

Этот конечный вид достоверности возникает из метода дедуктивного умозаключения, существовавшего приблизительно двадцать три столетия от Платона и Аристотеля к Гёделю, который первый выдвинул (1931) неразрешимое утверждение. Философы Античности и их традиционные последователи Средневековья, похоже, стремились ко всемогущей логике, которая в конечном счете разрешает любую проблему либо положительно, либо отрицательно. Математические логики ХХ столетия показали, что по крайней мере в математике цели древних недосягаемы. Но усилия всех математиков и логиков от Фалеса до ХХ столетия по достижению недосягаемого ни в коем случае не являлись пустой тратой времени и мысли. Возникнув из признания Фалесом, что дедуктивное умозаключение одновременно возможно и полезно, и продолжившись в успешных попытках греческих математиков (от Пифагора до Платона) дать последовательный счет как рациональных, так и иррациональных «величин», поиск универсальной достоверности многое выявил из того, что представляет непреходящий интерес для философии не меньше, чем для математики. Столетия позже часть всего, что было открыто во времена культивирования познания ради самого познания, оказалось непреложным и необходимым одиноким труженикам на заре новой эры науки. Можно привести классический пример. Кеплер, возможно, никогда не определил бы орбиты планет как эллипсы (с Солнцем в едином центре), если бы ему была недоступна греческая геометрия конических сечений. Не имея в качестве ориентира законов Кеплера, описывающих планетарные орбиты, Ньютон никогда не предложил бы миру свой закон всемирного тяготения; а без закона всемирного тяготения Ньютона развитие астрономии, физики и современной технологии шло бы совсем не так, как последние два с половиной столетия.

Потрясающее открытие пифагорейцев, что не все числа рациональны (то есть выражение a/b, где a, b – целые числа), знаменует основной поворотный момент в развитии дедуктивного умозаключения. Это оказалось началом возникновения математических теорий непрерывности и бесконечности. Это также послужило поводом для появления значительно иной эпистемологии и пересмотра некоторых старых теорий познания; а в направлении современной науки теория греков о непрерывности подготовила путь к пониманию движения. Эта эпохальная веха в развитии математической и философской мысли столь значительна, что кое-что из ее истории может быть интересным.

После открытия, что квадратный корень из двух не является рациональным числом, греческие геометры доказали подобное для многих других квадратных корней. Во времена Платона существование иррациональных чисел (как мы сейчас сформулировали бы) занимало философов, которые только от случая к случаю интересовались математикой. В диалоге Платона «Теэтет» Сократ пытается добиться от Теэтета объяснения понятия «знание».

«– Наберитесь храбрости и смело скажите, что вы считаете знанием:

Набравшись храбрости, Теэтет отвечает.

– Думаю, что науки, которые я изучаю у Феодора [Киренского, славившегося в 380 году до н. э.], – геометрия и те, что вы сейчас упомянули, и есть знание. Я бы еще прибавил мастерство сапожника и других ремесленников. Все это – знание».

Понятно, что Теэтет не поскупился и включил слишком много в свой перечень, дабы угодить столь непреклонному экзаменатору, как Сократ, и философ вынуждает свою жертву признать, что тот так и не сумел сформулировать, что такое «знание» как отвлеченное понятие, и затем пытается вытянуть из него, что такое глина. Сократ, видимо, мучительно пытается заставить Теэтета уловить и понять, что универсальная глина – не эта глина и не та глина, а глина как Вечная идея, Форма, в которой простые конкретные глины изготовителей кирпичей и очагов, гончары и другие ремесленники в некотором смысле «участвуют». Сократа не интересует ни одна из них. Он ищет нечто универсальное, абстракцию, идею, и Теэтет довольно оптимистично решает, будто постиг суть. В ответ на вежливую просьбу Сократа он делится с ним:

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг