Одна из главных радостей занятий математикой – возможность окончательных, не оставляющих ни тени сомнения доказательств. Это ставит математику на особое место в ряду других наук, которые опираются на соответствие законам материального мира. Однако новые открытия могут опровергать или изменять эти законы. В математике же доказанное однажды остается доказанным навсегда. Прошло больше 2000 лет с того момента, как Евклид доказал бесконечность множества простых чисел – и это никогда не удастся оспорить. Научно-технические формации сменяют друг друга, теоремы же вечны. Как однажды сказал великий Годфри Харди[15]
: «Математик так же, как художник или поэт, создает узоры. И если его узоры более устойчивы, то лишь потому, что они сотканы из идей». По-моему, доказать новую теорему – все равно что шагнуть на тропу, ведущую в научное бессмертие.В математике доказывают не только абсолютную истинность, но и
С вашего позволения, расскажу о первом своем опыте на этой стезе. В детстве двумя главными предметами моего обожания были настольные игры и загадки. Как-то раз мой друг предложил мне загадку, связанную с настольными играми, и, конечно, я был заинтригован. Он положил передо мной пустую шахматную доску размером 8 на 8 клеточек и 32 костяшки домино и спросил:
– Можешь выложить домино так, чтобы они закрыли всю доску?
– Конечно, – уверенно ответил я. – Просто по четыре костяшки на ряд. Вот так:
– Молодец, – сказал он. – А если я уберу две клетки – правую нижнюю и левую верхнюю, и их останется 62 – сможешь закрыть оставшиеся 31 костяшкой? – и он положил на крайние квадратики две монетки.
– Хм… Наверное, – ответил я.
Но как я ни пытался, какие комбинации ни пробовал, у меня ничего не получалось. Наконец я сдался, заявив, что это в принципе невозможно.
– А если невозможно, – сказал мой друг, – можешь
Я не мог. Ведь для этого потребовалось бы проверить бесконечное множество вариантов (если хотите, можете посчитать, сколько именно) и удостовериться в том, что
– Посмотри на цвета, – посоветовал друг, видя мое замешательство.
«На цвета? Причем тут цвета?» – подумал я. А потом понял. Обе закрытые клеточки были белыми, а значит, из 62 оставшихся свободными, 32 были черными и всего лишь 30 – белыми. А поскольку костяшка домино, как ее ни положи, закрывает пару разноцветных клеточек, выложить ими всю доску не получилось бы ни за что на свете. Здо́рово!
Если вам понравилось последнее доказательство, понравится и это. Играя в известный всем «Тетрис», нужно заполнять «стакан» из 10 клеток падающими фигурами. Всего их 7, и соответственно их форме их иногда обозначают латинскими буквами: I, J, L, O, Z, T и S.
Каждая фигура состоит из 4 квадратиков, поэтому вполне естественно задаться вопросом, можно ли сложить их как-нибудь так, чтобы получился прямоугольник размером 4 на 7? При этом фигурки можно переворачивать как угодно.
Оказывается, нельзя. Как это доказать? Давайте раскрасим квадратики в прямоугольнике в шахматном порядке – так, чтобы получилось 14 серых и 14 белых.