С помощью этих электродов регистрировались все возможные физиологические показатели жизнедеятельности мозга, в том числе и различные показатели с одного и того же электрода, что оказалось возможным благодаря применению полиэлектронейрографа, созданного нашими сотрудниками С.Г. Данько и Ю.Л. Каминским. На сегодня это все еще лучшая возможность для данных целей, для многоканальной записи физиологических процессов мозга и разных показателей с каждого из введенных электродов. В чем прелесть такой возможности, или, проще говоря, зачем это нужно? Дело в том, что доказательства взаимосвязи и взаимозависимости различных биоэлектрических процессов являлись обычно более косвенными и базировались на записях, например, двух видов активности с двух близко расположенных электродов. Получаемые данные были противоречивы: в одном состоянии мозга зависимость улавливалась, в другом – исчезала. Сейчас, с использованием полиэлектронейрографии, такая амбивалентность этих данных не вызывает удивления. Дело в том, что в обычном активном, бодрствующем состоянии физиологическая динамика в мозге очень дробная. На расстоянии в 2 мм (разрешающая способность пучков электродов) регистрируется совершенно различная активность. В некоторых фазах сна, иногда даже в состоянии очень спокойного бодрствования, релаксации, дробность может уменьшаться, мозг как бы начинает оперировать большими блоками – во всяком случае, по показателям электроэнцефалограммы и сверхмедленных физиологических процессов. В этих-то условиях и была ранее показана зависимость, например, разрядов нейронов от фаз электроэнцефалограммы. В наших исследованиях, естественно с применением гораздо меньших усилий, была показана зависимость импульсной активности нейронов от различных видов сверхмедленных физиологических процессов. Эти данные приводятся нами в статьях и монографиях.
Основой того, о чем рассказано в этой книге, явилась, однако, не просто регистрация различных физиологических процессов из разных зон мозга, а регистрация наиболее адекватных задаче процессов или их сочетаний при реализации изучаемой задачи. Такого рода рабочие комплексы легко выбирались тогда, когда была проведена определенная исследовательская работа с тем, что мы называем сейчас комплексным методом исследования мозга, включающим в себя регистрацию всех возможных физиологических процессов организма во время реализации различных функциональных проб и при электрических воздействиях через вживленные электроды.
Проведение такого рода исследований позволило формировать адекватные рабочие комплексы, т.е. регистрировать наиболее адекватные задаче физиологические показатели и формулировать саму задачу таким образом, чтобы возможность последующего извлечения информации оказывалась оптимальной.
В некоторых случаях адекватный физиологический показатель был ясен заранее. Так, очевидно, что для исследования мозгового обеспечения мыслительной деятельности самым целесообразным было использование наиболее быстрых процессов мозга. Однако и в этом, очень ясном, случае, в том, что касалось психологических заданий, было трудно решать вопрос на основе уже известных из психологической литературы тестов: они могли «не укладываться» в необходимое время и т.д., и т.п. В других случаях специально подбирались и физиологические процессы, и пробы.
Всегда, когда это было необходимо – или хотя бы целесообразно, – проводилась последующая компьютерная обработка результатов. За долгие годы было исследовано более десяти тысяч зон мозга, причем исследования каждой зоны проводились многократно. Отсюда следует, что все, о чем здесь написано, базируется на достаточно большом материале.
Многолетний опыт изучения организации механизмов мозга на основе инвазивной техники действительно много дал для понимания работы мозга. В то же время именно инвазивная техника, с ее тончайшими возможностями изучения микромира мозга, может быть невероятно обогащена, если с помощью приемов пространственного анализа функциональной организации мозга будет обрисована его макрокартина, проведено макрокартирование мозга.
В изучении функциональной организации и механизмов мозга большое место будет занимать нанесение «рисунка» на белые пятна в мозге и одновременно выяснение пространственной организации мозгового обеспечения мышления. Деятельность мозга человека, конечно, не исчерпывается мышлением. Но можно ли говорить, что изучается именно мозг человека, если не изучается человеческое мышление?
Уже сейчас в мире широко развернулись исследования, в которых представлены результаты макрокартирования с помощью неинвазивной техники и, в частности, позитронно-эмиссионной томографии применительно к мыслительной деятельности. Их количество далее будет, по-видимому, увеличиваться, но переход количества в качество в познании мозга произойдет не за счет простого увеличения числа таких работ.