Когда я ходил в школу в городе Солсбери в Южной Англии, я помню, как был совершенно очарован странным видом своей ярко красной школьной шапочки в жёлтом свете уличных фонарей. Она теперь выглядела не красной, а желтовато — коричневой. Как и ярко — красные двухэтажные автобусы. И вот по какой причине. Подобно многим другим английским городам в те дни, Солсбери использовал для своего уличного освещения лампы на парах натрия. Они испускают свет только в узких областях спектра, покрываемых характерными линиями натрия, и наиболее яркие линии натрия находятся в жёлтом цвете. Как бы то ни было, натриевые огни светятся чистым жёлтым светом, очень отличающимся от белого солнечного света или неопределённо желтоватого света обычной электрической лампочки. Поскольку красного света практически нет вообще в свете, обеспечиваемом натриевыми лампами, никакой красный свет не мог отражаться от моей кепки. Если вам интересно, что делает кепку или автобус красным вообще, ответ заключается в том, что молекулы красителя или краски поглощают большую часть света всех цветов, кроме красного. Поэтому в белом свете, который содержит все длины волн, отражается главным образом красный свет. Под уличными фонарями, использующими пары натрия, нет никакого красного света, чтобы отражаться — отсюда желтовато — коричневый цвет.
Натрий — лишь один из примеров. Вы помните из главы 4, что каждый элемент имеет своё собственное уникальное «атомное число», представляющее собой число протонов в ядре (а также число электронов, вращающихся вокруг него). Что ж, по причинам, связанным с орбитами его электронов, каждый элемент также имеет свой собственный уникальный световой эффект. Уникальный, как штрихкод… фактически, штрихкод представляет собой то, чем в значительной степени является картина линий в спектре звёзд. Вы можете сказать, какие из 92 природных элементов присутствуют в звезде, разлагая свет звезды в спектроскопе и глядя на линии штрихкода в спектре.
Существует вебсайт, где вы можете выбрать любой элемент, какой захотите, и посмотреть на спектральный штрихкод: http://bit.ly/MagicofReality2. Просто перемещайте ползунок, пока не остановитесь на элементе, который вам нужен. Они расположены в порядке атомных номеров, от водорода по возрастанию.
Например, выше показан рисунок для водорода, первого элемента (так как он, как вы помните, имеет только один протон). Вы видите, что излучение водорода состоит из четырёх спектральных линий: в фиолетовой, тёмносиней, голубой и красной частях спектра (длины волн различных цветов приведены сверху).
Для того чтобы понимать картинки на этом сайте, нам нужно понять пару в остальном сбивающих с толку деталей. Прежде всего, обратите внимание на два способа, с помощью которых появляются полосы: как цветные линии на на чёрном фоне (в верхней части картинки) и как чёрные линии на цветном фоне (в нижней части картинки). Они названы спектром излучения (цветные на чёрном фоне) и спектром поглощения(чёрные на цветном фоне). Что получаете вы — зависит от того, излучает ли элемент свет (как элемент натрий, когда светится в натриевом фонаре) или становится на пути света (как это часто происходит, когда элемент присутствует в звезде). Я не буду обременять вас этим различием. Важным моментом является то, что в обоих случаях появляются полосы в одних и тех же местах спектра. Узор штрихкода один и тот же для любого конкретного элемента, будь то линии чёрные или цветные.
Другая усложняющая деталь — то, что некоторые полосы намного ярче, чем другие. Глядя на свет от звезды с помощью спектроскопа, мы обычно видим только очень яркие полосы. Но этот вебсайт даёт все линии, включая слабые, которые могут быть видны в лаборатории, но обычно не обнаруживаются в звёздном свете. Натрий является хорошим примером. Практически, свет натрия жёлтый, и его заметные полосы появляются в жёлтой части спектра: вы можете забыть о других полосах, хотя и интересно, что они там есть, поскольку они заставляют узоры выглядеть ещё более похожими на штрихкоды.
Вот спектр излучения натрия, на котором показаны только три наиболее сильные линии штрихкода. Вы можете видеть, как преобладает жёлтый.
Итак, поскольку каждый элемент имеет свой штрихкодовый рисунок, мы можем посмотреть на свет от любой звезды и увидеть, какие элементы присутствуют в этой звезде. Правда, это довольно сложно, потому что штрихкоды нескольких различных элементов, вероятно, будут путаться. Но есть способы их сортировки. Каким замечательным инструментом является спектроскоп!