Пожалуй, существует мало настолько же завораживающих вещей, как поведение пары магнитов, и возможно поэтому магнетизм всегда был окутан ореолом загадки. Для древних он являлся ощутимым доказательством присутствия невидимых сил. Есть ли что-то более удивительное, чем наблюдать за куском железа, таинственно притягиваемым магнитом? Или ощущать невидимое противостояние, когда мы пытаемся приблизить друг к другу одинаковые полюса двух из них?
В Китае еще в древности открыли, что удлиненный кусок магнетита, плавающий в ведре с водой, ориентируется в направлении север-юг. В 376 году до н.э. генерал Хуан Ти использовал столь любопытное явление для ориентации при движении своей армии. Но применять магнит в морской навигации китайцы начали только через 900 лет. Этот примитивный компас был заимствован арабами и с ними пришел в Европу.
В то время как корабли начинали использовать новый инструмент, Петрус Перегринус де Марикур (ок. 1260) исследовал природу магнетизма и был первым, открывшим существование двух магнитных полюсов. Он обозначил их как северный и южный. По его мнению, таинственные силы, благодаря которым железо двигается к магниту, были похожи на силы, которые заставляют планеты и Солнце вращаться вокруг Земли.
Свою самую знаменитую работу, «Послание о магните» (1269), де Марикур написал в военном лагере во время осады Лучеры.
Это был великий пример эмпиризма в эпоху, которую характеризует практически полное отсутствие интереса к наблюдению и экспериментам.
Пришлось ждать до 1600 года, пока появилось то, что по заслугам считается первой значимой научной книгой в Англии:
«О магните, магнитных телах и Большом Магните — Земле».
Ее написал Уильям Гильберт (1544-1603), врач королевы Елизаветы I, отец экспериментальной английской науки. Ему мы обязаны словом «электричество», произошедшим от греческого elektron. В работе описываются многочисленные эксперименты с железом и железняком, лабораторные инструменты, разработанные самим Гильбертом, и многочисленные разоблачения заблуждений, свойственных тому времени. Но прежде всего, в ней содержится объяснение поведения компаса.
Для этого Гильберт сделал магнитную сферу, названную им терреллой (маленькой Землей), которая служила ему лабораторным образцом для описания Большого Магнита — Земли.
Он сравнил направление, которое указывает компас, когда меняется его положение на террелле, с меридианами, и назвал полюсами те точки, где они пересекаются. Гильберт сделал вывод, что наша планета ведет себя так же, как террелла: это Большой Магнит.
К несчастью, значительные исследования Гильбертом магнетизма, которые он смог осуществить благодаря большой пенсии, предоставленной королевой (это был один из первых грантов на исследование в истории), были заброшены и забыты почти на два века, потому что его коллеги больше интересовались изучением электричества.
До 1819 года считалось, что магнетизм и электричество — абсолютно разные явления. Зимой, в начале этого года, профессор физики Копенгагенского университета по имени Ханс Кристиан Эрстед сообщил на публичной лекции о магнетизме, что при приближении компаса к электрическому проводу стрелка изменяет направление и перестает показывать на север. «Никто в аудитории не был впечатлен этим», — прокомментировал он через некоторое время. Эрстед интересовался возможной связью между обоими явлениями с 1807 года, и его интерес к теме обозначился в 1813 году, когда он написал:
В статье от 21 июня 1820 года Эрстед сообщил научному сообществу о своем открытии, делая акцент на зависимости от расстояния и от относительного положения провода и компаса: намагниченная стрелка поворачивается, если только не расположена перпендикулярно проводу (см. рисунок).
Любопытно, что столь удивительное открытие французская наука встретила враждебно. «Это просто еще одна немецкая блажь», — утверждал физик Пьер Луи Дюлонг (1785-1838). Однако его соотечественник Франсуа Араго (1786-1853) воспроизвел эксперимент Эрстеда в Женеве, all сентября 1820 года сделал это в Парижской академии наук. Он также открыл, что медный провод, по которому проходит электрический ток, притягивает железные опилки: они облепляют его, но отделяются, когда ток пропадает. Четыре года спустя, в 1824-м, Араго обнаружил, что если начать вращать медный диск, над которым размещена намагниченная стрелка, то она будет отклоняться от первоначального положения. Точно так же, если этому препятствовать (закрепив стрелку), движение диска стремится к замедлению.