Максвелл полностью предсказал новое явление: небольшой электрический ток можно измерить в изоляторах и даже в вакуумном пространстве. Этот новый тип тока появится, если электрическое поле будет изменяться. Ученый назвал его током смещения.
При введении данного понятия в уравнения все приобретало чудесный вид. И все-таки чего-то не хватало. Любой упругий материал имеет способность передавать волновое движение, как это происходит с водой в пруду, когда бросают камень. В модели Максвелла мельчайшее возмущение в одном столбике «подушечек» привело бы к колебанию смежных ячеек, что вызвало бы возмущение в магнитном поле вдоль оси вращения ячеек. Что это означало? Что любое возмущение в электрическом поле вызывает подобное возмущение в магнитном поле, и наоборот. Волны, вызванные любым типом возмущения в одном из полей, передаются на оба поля: мы находимся перед электромагнитными волнами. Более того, это поперечные волны, то есть колебание наблюдается в направлении, перпендикулярном распространению возмущения.
Есть ли какой-нибудь вид известной поперечной волны, которая связана с электромагнитными явлениями? Конечно, есть!
Это свет! Максвелл должен был вычислить скорость, с которой перемещаются его электромагнитные волны, и сравнить ее со скоростью света. К несчастью, он не мог сделать этого в Гленлэре, поскольку оставил все справочные пособия с нужными ему данными в Лондоне, но вернувшись в октябре, снова взялся задело.
Оказавшись в своем кабинете в Лондоне, Максвелл не мог ждать. Получив свежие экспериментальные данные, он вычислил, что электромагнитные волны перемещаются со скоростью 310740 км/с. Французский физик Физо до этого измерил скорость света в воздухе и получил 314850 км/с. Обе величины были слишком похожи для того, чтобы считаться совпадением: свет должен был быть электромагнитной волной.
Максвелл решил дополнить свою статью «Физические силовые линии* двумя новыми частями, которые вышли в 1862 году. В третьей части речь шла об электростатике, и в ней было введено понятие тока смещения и электромагнитных волн. В четвертой ученый воспользовался своей моделью для объяснения явления, открытого Фарадеем и заключавшегося в том, что при пересечении магнитного поля наблюдается вращение плоскости поляризации света.
Модель молекулярных вихрей, предложенная для объяснения силовых линий Фарадея, развилась в частички электричества, вращающиеся ячейки, а затем в упругие ячейки. Гипотеза о вихрях оказалась одной из самых продуктивных в истории физики. В данном случае настойчивость Максвелла к проведению физических аналогий естественным явлениям оказалась намного более плодотворной, чем в случае с кинетической теорией газов. Был лишь один довольно обременяющий вопрос, хотя и философского характера: общая справедливость его результатов была связана с механической моделью эфира. А это Максвеллу совсем не нравилось.
Уже в декабре 1861 года, до публикации двух последних частей статьи, Максвелл написал своему другу по Кембриджу:
В статье он сообщал, что «гипотеза вихрей» является «вероятной», но модель эфира с вращающимися ячейками и частицами-подушечками крайне «неудобна»: это «предварительная и временная гипотеза». Максвелл решил оставить в стороне свою модель и использовать исключительно принципы динамики — математически сформулированные законы, которые управляют материей и движением. Чтобы вывести уравнения электромагнетизма без использования своей молекулярной модели, ему потребовался метод, разработанный в XVIII веке французом Жозефом Луи Лагранжем и описанный в его «Аналитической механике». Главным для Джеймса было то, что данный метод позволял анализировать систему, работая с ней, словно это черный ящик, и не требовал знаний о том, как она действует изнутри. Точная природа лежащего в основе механизма могла быть скрытой, но если система следовала законам динамики, то Максвелл был способен вывести уравнения, регулирующие электромагнитные процессы, без помощи какого- либо типа модели.