Читаем Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез полностью

Максвелл говорил о существовании некоего физического механизма, который служит субстратом электромагнитного поля. По сути он предположил, что все пространство полно крошечных круглых ячеек, упакованных компактно, с очень низкой плотностью и способных вращаться (см. рисунок на стр. 149, где круглые ячейки для наглядности заменены на шестиугольные). Сосредоточимся на одной из них. Когда она вращается, центробежная сила изменяет ее форму, расширяя по экватору и сжимая вдоль оси вращения так же, как это происходит с нашей планетой. Естественно, расширяясь посередине, она будет толкать остальные ячейки, которые ее окружают. А если все станет вращаться в одном направлении, то система будет осуществлять эффективное давление (толкать) в направлении, перпендикулярном оси вращения. Если мы посмотрим на ось вращения, то увидим точно противоположное. Так как в полюсах ячейки имеют тенденцию сжиматься, можно это истолковать так, что появляется натяжение. Следовательно, если все ячейки образуют линию в пространстве, то ось вращения и направление, перпендикулярное ей, будут вести себя как силовые линии, предложенные Фарадеем: появятся сила притяжения вдоль оси вращения и сила отталкивания в направлениях, перпендикулярных ей. Более того, так как эти ячейки могут вращаться по часовой стрелке или против нее, обе ситуации позволяют определить два направления поля (представленные на рисунке знаками + и -).

Здесь Максвелл столкнулся с маленькой проблемой: железо и дерево в присутствии магнита не ведут себя одинаково. Как отразить данное различие? Джеймс понял, что различную магнитную чувствительность можно включить в модель, просто поменяв плотность ячеек. В терминах механики это означает, что высокая магнитная чувствительность железа равносильна наличию более плотных ячеек в этом металле.

Механическая модель молекулярных вихрей, которую Максвелл использовал для объяснения электромагнитных явлений.


У него уже была построена модель: оси вращения ячеек определяли направление магнитного поля в любой точке пространства, а их плотность и скорость вращения — его интенсивность. Но что начинало вращать эти ячейки? Более того, как можно наблюдать на рисунке, если две смежные ячейки вращаются в одном и том же направлении, их поверхности (которые находятся в контакте, чтобы соблюсти компактное расположение) трутся друг о друга в противоположном направлении, что в итоге остановит вращение. Джеймс предположил, что между ячейками есть другие, более мелкие частицы, которые действуют как подушечки. Максвелл высказал мнение, что эти «подушечки» являются частичками электричества, поэтому в присутствии электрического поля они начнут двигаться вдоль зазоров между ячейками: появится электрический ток. Оказывается очевидным, что именно данное перемещение наших особенных «подушечек» вызывает вращение ячеек.

С помощью этой модели Максвелл был готов объяснять электромагнитные явления. Например, если бы частички электричества (подушечки) перемещались по каналам, не вращаясь, ячейки с обеих сторон начали бы вращаться в противоположных направлениях, что именно и происходит, когда создается магнитное поле вокруг электрического провода. Единственным явлением, которое не объясняла такая модель, было отталкивание двух статических электрических зарядов.

Джеймс был не слишком доволен результатом: он не смог получить полной теории, что было его главной целью. Летние каникулы в Гленлэре и занятие хозяйственными делами должны были помочь ему отвлечься и несколько месяцев спустя окончательно решить эту проблему. Максвелл не планировал ни работать, ни читать книги по данной теме, но он не мог помешать возникновению в своей голове новых идей.

Прежде ученый думал, что каждая ячейка вращается как нечто целое, не рассеивая энергию. Это предполагало, что материал, из которого они сделаны, должен иметь некоторую упругость. Может ли такая упругость быть источником сил между электрическими зарядами? В проводниках электрический ток появляется, потому что «подушечки» перемещаются под действием электрического поля. Подобного не происходит в изоляторах: там они прикреплены к ячейкам. Но упругие ячейки могут деформироваться, позволяя частицам электричества — подушечкам — перемещаться на короткие расстояния. Как далеко? Как позволит деформация ячеек, потому что они будут стремиться вернуться в исходное положение подобно пружине, когда ее натягивают: частицы будут двигаться, пока эта восстанавливающая сила не будет равна силе электрического поля. Это означает, что появится небольшое смещение частичек электричества в изоляторе; говоря другими словами, перед нами — электрический ток. Электрическая чувствительность веществ отражена в модели как упругость ячеек: чем больше чувствительность, тем более упругими становятся ячейки, и ток смещения становится больше.

Перейти на страницу:

Похожие книги

Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература