Читаем Максвелловская научная революция полностью

Но «идеи Фарадея» в данном случае – не полевые концепции, как это могло бы показаться современному читателю, воспитанному на представлениях о том, что максвелловская электродинамика – это лишь математическое выражение физических концепций Фарадея. «Идеи Фарадея» – это всего лишь представления о силовых линиях, касательных к направлениям электрических и магнитных сил в данной точке.

Поэтому мы приступаем к такому определению сил в каждой точке, когда они могут быть репрезентированы равномерным движением несжимаемой жидкости.

«Я затем предлагаю…; и в конечном счете намереваюсь показать, каким образом при помощи распространения этих методов, и за счет введения другой идеи Фарадея, законы притяжения и индуктивных действий могут быть ясно поняты без введения предположений о физической природе электричества

Соотнося все с чисто геометрической идеей движения воображаемой жидкости, я надеюсь добиться общности и точности, а также избежать опасностей, возникающих благодаря поспешному принятию предварительной теории, намеревающейся объяснить причины этих явлений» (Maxwell [1856], p. 159).

Таким образом, первая инновация Максвелла состояла в том, что он предложил рассматривать фарадеевские силовые линии, которые описывали направления электрических и магнитных сил, в качестве трубок с некоей идеальной несжимаемой жидкостью, репрезентирующих теперь не только направления сил, но и их интенсивности, поскольку скорости течения жидкости обратно пропорциональны сечениям этих трубок.

Для сторонника философии Канта принципиально важно, что эта несжимаемая жидкость практически никакого отношения к реальности не имеет. Максвелл ни в коем случае не хочет утверждать, что какие-либо свойства электромагнитных явлений репрезентируются свойствами несжимаемой жидкости. Не случайно ни в [I], ни позже Максвелл никогда не заботился о том, чтобы построить единую непротиворечивую механическую модель (не путать с теорией) электромагнитных явлений, а часто использовал одновременно несколько моделей, которые даже могли противоречить друг другу.

«Это даже и не гипотетическая жидкость, вводимая для объяснения действительных явлений. Это – всего лишь собрание воображаемых свойств, которое может быть использовано для вывода определенных теорем чистой математики способом, для многих более интеллигибельным и более подходящим для физических проблем, чем тот способ, в котором используются только алгебраические символы» (Maxwell [1856], p. 160).

Как отмечает Максвелл, репрезентация электрических и магнитных полей при помощи трубок с несжимаемой жидкостью в выгодную сторону отличается от других случаев тем, что между трубками нет никакого промежутка. Единственное налагаемое на предлагаемые модели требование, как, впрочем, и на все математические конструкты, – чтобы они не противоречили друг другу. Во всем остальном – полная свобода воображения. Даже законы сохранения могут в наших моделях нарушаться!

«В концепциях источников, где жидкость может производиться, и стоков, где она аннигилируется, нет ничего само – противоречивого. Свойства жидкости полностью в нашем распоряжении, мы сделали ее несжимаемой, а сейчас предполагаем, что она возникает из ничего в одних точках, и превращается в ничто в других» (Maxwell [1856], p. 162).

К этому следует добавить, что введенное Томсоном и Максвеллом исследование электростатики и магнитостатики при помощи гидродинамических моделей оказалось весьма плодотворным; в теории поля до сих пор используются термины «источники», «дивергенция», «ротор» (вихрь) и т.д.

И в оставшихся разделах работы [I] Максвелл показывает, каким образом идея линий движения жидкости может быть применена для описания таких относительно простых разделов, как статическое электричество, постоянный магнетизм, магнетизм индукции и однородные гальванические токи. Там же вводится вторая максвелловская инновация, также основанная на идеях Фарадея – идея электротонического состояния. Максвелл связывал идею Фарадея об электротоническом состоянии с представлением о магнитном потоке и его инерционных свойствах. Он ввел «электротонический вектор» A как характеристику потенциальной возможности появления электродвижущей силы при изменении магнитного поля.

«Мы можем представить себе электротоническое состояние в какой-либо точке пространства как некоторый определенный по величине и направлению вектор и можем это электротоническое состояние выразить в данной точке пространства с помощью какого-либо механического вектора, например, скорости или силы, направление и величина которых соответствуют направлению и величине определенного нами электротонического состояния. Такое представление не связано ни с какой физической теорией, а является только своего рода искусственной иллюстрацией» (Максвелл, [1856], 1952, С. 83).

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука