Для адекватной оценки значимости герцевского открытия важно, что Герц был отнюдь не первым, кто наблюдал радиоволны
. Так, до него Хьюз обнаружил стоячие электромагнитные волны. Или, что еще более значимо, также наблюдал радиоволны в 1875-1882 гг. и сам Томас Альва Эдисон. Но никто из них не был настолько осведомлен в теории Максвелла для того, чтобы cвязать наблюдаемые эффекты с электромагнитными волнами (Sengupta, Sarkar, 2003).С другой стороны, роль электромагнитной теории в открытии Герца не следует и преувеличивать. Так, в предисловии к основному сборнику своих статей «
В общем случае, мы можем сказать, что открытие Герца является результатом плодотворного взаимодействия двух исследовательских традиций – теоретической и экспериментальной,
каждая из которых обладает своей собственной логикой эволюции. В этом процессе эти традиции «обтачиваются», используя термин Максвелла «are grinding out», шлифуют друг друга. А именно: в рамках теоретической традиции выдвигаются различные предсказания, предлагаются различные объяснения. Экспериментальная же традиция выбирает самое простое.С другой стороны, эксперимент предоставляет в распоряжение исследователя чрезвычайно большое число опытных данных; теория же позволяет отобрать лишь наиболее существенные.
«Рука об руку
с теоретическими дискуссиями я продолжал экспериментальную работу…» (Hertz 1893,p. 15).Максвелловская попытка нащупать разумный компромисс между тремя исследовательскими программами – Юнга-Френеля, Фарадея и Ампера-Вебера – была подхвачена Германом Гельмгольцем. В его формализме заряды и токи рассматривались в качестве источников электрических и магнитных полей, что напрямую вело к лоренцевскому дуалистическому объединению уравнений движения зарядов и уравнений поля.
Гельмгольц скептически относился к максвелловской идее светового эфира и вместо нее разрабатывал концепцию, основанную на представлениях о диэлектрическом и диамагнитном веществе. В этой эфирной модели требование бесконечной проводимости заставляло заряд вести себя подобно несжимаемой жидкости, и делать все токи замкнутыми. Гельмгольц пытался переполучить все значимые результаты максвелловской теории, не отказываясь при этом и от основных положений электродинамики Ампера-Вебера. В частности, он предполагал, что электростатические силы обязательно присутствуют в пространстве в качестве особого поля, и что изменение поляризации или смещения зарядов свидетельствует об изменении поля электростатического.
В дальнейшем, совместно с Генри Роуландом и Николаем Шиллером, Гельмгольц провел в 1873—78 гг. серию экспериментов по проверке и уточнению своих теоретических представлений. В 1879 г. он организовал конкурс с премией за «экспериментальное упрочение любого отношения между электромагнитным действием и поляризацией диэлектриков» и уговорил Генриха Герца принять в этом конкурсе участие. В результате в 1886—88 гг. Генрих Герц занялся исследованием соотношений между теориями Максвелла и Гельмгольца в серии экспериментов.
Для ее проведения необходимы были устройства, производящие электрические колебания, гораздо более быстрые по сравнению с уже существующими.
Усилия Герца были вознаграждены; он продемонстрировал существование чрезвычайно быстро изменяющихся токов с сильным индуктивным действием через разрядную полость. Он также установил резонансное соотношение между первичной и вторичной электрической цепями в присутствии регулярных колебаний. В 1888 г. разработанная техника позволила Герцу начать серию экспериментов по отражению, преломлению и поляризации радиоволн, наглядно раскрыв аналогию между оптическим излучением и радиоволнами.