От себя могу добавить, что это говорилось более полувека назад. С тех пор человек весьма «успешно» наступает на окружающую среду: вырубает леса, отравляет атмосферу всеми возможными способами и средствами, заводами, химическими предприятиями, автомобилями, своей бесхозяйственностью и безалаберностью (после меня — хоть потоп), отравляет все водоемы, живет в малогабаритных квартирах с низкими потолками и ест черт знает что!
Поэтому в наше «суперцивилизованное» время проблема чистого ионизированного воздуха не только не исчезла, а наоборот увеличилась многократно.
Принцип работы ионизатора воздуха довольно прост. Если мы возьмем любой источник постоянного тока
Рис. 1.
Производительность этого простого прибора зависит от трех факторов — величины напряжения источника тока
А.Л.Чижевский исследовал процесс ионизации и пришел к выводу, что для нормальной работы ионизатора необходимо отрицательное напряжение не менее 25 000 В (25 кВ), площадь излучателя — «люстры» — 0,7–0,8 м2
для жилого помещения 15–20 м2. Таким образом, основная задача сводится к получению источника постоянного тока напряжением не менее 25 кВ. Больше — лучше.В принципе такой источник можно получить, соединив последовательно необходимое количество сухих элементов (батареек). И такой источник был бы идеальным для нашей задачи. Он не создавал бы электромагнитных помех, работал абсолютно бесшумно, чего не всегда удается добиться при других схемных решениях, рассмотренных ниже.
Но!!! Простой арифметический подсчет показывает, что батареек типа «Крона» с напряжением 9 В нужно почти 3 000 штук, других — еще больше! Слишком дорогое удовольствие. Поэтому таким путем никто не идет, а применяют специальные преобразователи напряжения, о чем расскажем ниже.
Следует заметить, что встречающиеся иногда описания различных малогабаритных «ионизаторов» с действующим напряжением 5–6 кВ просто не заслуживают внимания. А встречающиеся в продаже «настольные» ионизаторы вряд ли отвечают своему названию и едва ли могут что-то ионизировать.
Итак, для нормальной работы ионизатора нам необходимо высокое постоянное напряжение не менее 25 000 В. От применения батареи сухих элементов приходится отказаться — дорого, да и объем такая батарея займет приличный, что неудобно.
Наиболее рационально питать наш прибор от сети переменного тока. Казалось бы, что надо изготовить повышающий трансформатор, чтобы сетевое напряжение 220 В повысить до 25 кВ и затем его выпрямить. Теоретически это возможно. Практически — нет, особенно в домашних условиях. Несколько сот тысяч витков тонкого провода вторичной повышающей обмотки надо намотать с принудительным шагом, то есть с зазором между витками, каждый слой обмотки разделить довольно толстым слоем изоляции. В результате катушка получится огромных размеров, и мы не сможем найти подходящий сердечник из трансформаторной стали, чтобы она разместилась на нем. Кроме этого, очень трудно добиться высокой электропрочности, катушка должна быть залита специальным компаундом на основе эпоксидных смол, иначе неизбежны пробои между витками. Другой камень преткновения — отсутствие выпрямительных приборов на такое высокое напряжение. Последнее, правда, преодолимо с помощью нескольких высоковольтных столбов (выпрямителей), соединенных последовательно. Тем не менее такой путь технически сложен.
В установившейся практике для получения высоковольтного постоянного напряжения применяют однополупериодные выпрямители с умножением напряжения (рис. 2).