Колебания D3-бран описываются калибровочной теорией, похожей на КХД. Ранее мы уже говорили о колебаниях D1-бран. Вкратце: колебания D1-браны можно представить двумя способами: либо как рябь, бегущую по бране, либо как струну, прикреплённую к бране и скользящую по ней. Второй способ описания лучше, чем первый, обобщается на случай D3-бран. Возьмём три D3-браны и расположим их одна над другой, для удобства присвоив им цветовые обозначения. Одну брану назовём красной, другую — синей, а третью — зелёной. Если струна прикреплена одним концом к красной бране, а другим — к синей, какого она будет цвета? Интуитивно кажется, что пурпурного. Ну нет, подобная цветовая метафора уведёт нас слишком далеко. Правильнее будет сказать, что цвет струны плавно перетекает из красного в синий. Оказывается, именно такими цветами обладают глюоны. Теперь понятно, откуда берутся восемь типов глюонов. Три глюона имеют цвета: красно-красный, красно-синий и красно-зелёный, ещё три начинаются с зелёного цвета, и ещё три — с синего. Итого — девять. Упс! Перебор. К сожалению, для объяснения, почему в действительности глюонов не девять, а восемь, мне пришлось бы задействовать слишком сложный математический аппарат.
Три D3-браны, расположенные одна над другой, обозначены как «красная», «зелёная» и «синяя». Струны, идущие от одной браны к другой, используются для описания колебаний бран
Если не брать во внимание небольшую проблему с лишним глюоном, то примерно понятно, как можно получить глюоны из трёх D3-бран, соединённых струнами. С кварками несколько сложнее. Я опущу этот вопрос, чтобы показать главную изюминку: я взял три D3-браны, соединил их струнами и получил глюоны. Если бы я взял одну D3-брану, я бы получил фотоны. Взяв две D3-браны, я получу уже упоминавшуюся ранее калибровочную теорию, ассоциированную со сферической симметрией. В общем случае, взяв
Теперь вспомним, что если взять много бран и сложить их вместе, то такая конструкция лучше всего описывается чёрной дырой с нулевой температурой. В пятой главе я показал это на примере D0-бран. С D3-бранами получится то же самое. Сложенные одна над другой, они искривят пространство-время вокруг себя, и в их непосредственной окрестности возникнет горизонт чёрной дыры. Из-за большого количества измерений наглядно изобразить форму окружающего D3-браны горизонта очень трудно. Представьте себе нечто, напоминающее цилиндр, двумерная поверхность которого круглая в пяти измерениях и прямая ещё в трёх. Всего восемь измерений. Представили? Кажется, что всё это достаточно далеко от КХД. При наличии у D3-бран дополнительной колебательной энергии горизонт немного увеличивается в размерах и приобретает ненулевую температуру.
Важнейшей деталью струнно-калибровочной дуальности является возможность применить к колебаниям D3-бран формулу