Физики постоянно сталкивают что-нибудь с чем-нибудь в надежде получить что-либо ещё, но в последнее время их предпочтения сместились к столкновениям электронов с позитронами. Причина в том, что электроны имеют очень простую структуру по сравнению с атомными ядрами. Нет никаких свидетельств в пользу того, что электрон имеет внутреннюю структуру. Позитроны в этом отношении идентичны электронам, за исключением того, что они несут не отрицательный, а положительный заряд. Протоны устроены гораздо сложнее — они состоят как минимум из трёх кварков и какого-то количества глюонов. Общее название частиц, составляющих протон, —
Чтобы лучше представить себе характер этих столкновений, рассмотрим в качестве примера автомобильный краш-тест, в котором машины сталкиваются лоб в лоб. В большинстве случаев машины разбиваются в лепёшку, но находящиеся внутри манекены, являющиеся аналогами партонов, остаются более-менее неповреждёнными. Это пример мягкого процесса при столкновении двух протонов. В редком неблагоприятном случае обломки манекенов вместе с остатками автомобилей разлетаются в разные стороны — это пример жёсткого процесса. Протон-протонные столкновения чаще всего представляют собой гибрид небольшого числа относительно редких жёстких процессов и множества мягких.
Поспешу также заверить вас, что, вопреки журналистским страшилкам, в высокоэнергетических столкновениях частиц нет ничего опасного. Миллиарды космических частиц ежесекундно вторгаются в земную атмосферу, сталкиваясь с протонами и с атомными ядрами азота и кислорода. То, что происходит внутри Теватрона, и то, что происходит внутри БАК, — не более чем управляемые варианты процессов, происходящих в атмосфере Земли с сотворения мира. Из-за того, что огромное количество столкновений в коллайдерах происходит в сравнительно небольшой области, для уменьшения воздействия возникающей при этом радиации все установки спрятаны глубоко под землёй, но следует заметить, что риск облучения персонала здесь гораздо ниже, чем на атомных электростанциях.
Столкновения ионов золота на первый взгляд очень похожи на столкновения протонов. Каждое ядро представляет собой большой комок нуклонов, состоящих в свою очередь из партонов. При столкновении некоторые партоны сталкиваются жёстко, в то время как остальные — мягко. Подобно протонам, ядра золота при столкновении также полностью разрушаются, рождая буквально тысячи частиц.
Качественно столкновения ядер золота гораздо более катастрофичны, чем столкновения протонов. Возвращаясь к автомобильной аналогии, можно сказать, что столкновения ядер золота похожи на столкновения автомобилей, начинённых взрывчаткой.
При этом возникает очень горячий ядерный шар, который затем быстро сдувается. Этот шар горячее, чем всё, что мы можем себе представить. При обычном химическом взрыве достигается температура в несколько тысяч кельвинов. Температура в центре Солнца достигает 16 миллионов кельвинов. Похожие температуры достигаются при ядерном взрыве. Но температура, достигаемая в RHIC, превышает температуру в центре Солнца в 200 000 раз! Это горячее всего, что можно себе вообразить. Протоны и нейтроны при таких температурах «плавятся», освобождая находящиеся внутри них кварки и глюоны, формирующие кварк-глюонную плазму, о которой я уже упоминал ранее.
Супер-сверх-высокоскоростные столкновения ядер золота приводят к образованию кварк-глюонной плазмы, распадающейся на тысячи высокоэнергетичных частиц