И он начал доказывать теорему Пифагора не методом Евклида, а более простым и убедительным способом, которым, по-видимому, пользовался сам Пифагор. Он начертил квадрат, затем рассек его двумя пересекающимися прямыми так, что они образовали два квадрата и два равных прямоугольника. В прямоугольниках он провел диагонали, получив таким образом четыре одинаковых прямоугольных треугольника. Тогда стало очевидно, что площади обоих квадратов равны квадратам тех двух сторон треугольника, на которых они построены (исключая обе гипотенузы). Таков был первый чертеж.
На втором чертеже он нанес четыре прямоугольных треугольника, полученных при предыдущем делении, и перестроил их внутри, вокруг исходного квадрата, таким образом, что прямые углы треугольников совпали с углами квадрата, гипотенузы были обращены внутрь, а большие и меньшие стороны треугольника легли на стороны квадрата. При этом каждая сторона квадрата оказалась равной сумме этих сторон треугольников. Таким образом, исходный квадрат был преобразован в четыре прямоугольных треугольника и в квадрат, построенный на гипотенузе. Четыре треугольника равны двум прямоугольникам исходного построения. И, следовательно, квадрат, построенный на гипотенузе, равен сумме двух квадратов, построенных на двух других сторонах, на которые с помощью прямоугольников был разделен исходный квадрат.
Совершенно не математическим языком, но четко и с непоколебимой логикой излагал Гвидо свое доказательство. Робин слушал, я с его круглого веснушчатого лица не сходило выражение полного недоумения.
— Treno Поезд (итал.)., — повторял он время от времени. — Treno. Нарисуй мне поезд.
— Сейчас, — молил Гвидо. — Погоди минуточку. Ты только взгляни сюда. Взгляни-ка! — Он готов был задобрить Робина чем угодно. — Это так красиво. И так легко.
Так легко… Теорема Пифагора помогла мне понять, откуда взялись музыкальные вкусы Гвидо. Он не был юным Моцартом нашей мечты: он был маленьким Архимедом и, как большинство людей такого склада, обнаружил случайный поворот в сторону музыки.
— Treno, treno! — кричал Робин, сердясь все сильней и сильней, по мере того как шло объяснение. А так как Гвидо настойчиво продолжал свое доказательство, то малыш окончательно вышел из себя:
— Cattivo Злой (итал.). Гвидо! — закричал он и набросился на товарища с кулаками.
— Ну, ладно, — сказал Гвидо, сдаваясь. — Давай нарисую тебе поезд.
И он начал водить по камням обожженной палочкой.
С минуту я молча смотрел. Это был не очень хороший поезд. Гвидо мог придумать и доказать теорему Пифагора, но рисовальщиком он не был.
— Гвидо, — позвал я.
Дети обернулись и посмотрели наверх.
— Кто научил тебя рисовать эти квадраты? — Ведь кто-нибудь мог показать.
— Никто. — Он покачал головой, обеспокоенно, словно боясь, что допустил в чертеже ошибку, начал оправдываться и объяснять: — Видите ли, по-моему, это очень красиво. Потому что эти квадраты вместе, — он показал на два маленьких квадрата на первом чертеже, — точно такие же, как тот один. — И, обведя квадрат гипотенузы на втором чертеже, он посмотрел на меня чуть ли не с виноватой улыбкой. Я кивнул.
— Да, это очень красиво, вправду очень красиво, — сказал я.
На его лице появилось выражение радостного облегчения; он рассмеялся от удовольствия.
— Ведь как получается, — сказал он, спеша поделиться со мной замечательным секретом, который он открыл. — Вы разрезаете длинные квадраты (так он называл прямоугольники) на два куска, а потом эти четыре куска, совсем одинаковые, потому что… потому что — ах, я должен был раньше сказать, — потому что эти линии, видите…
— А я хочу поезд, — настаивал Робин. Опершись о перила балкона, я смотрел на детей. И думал о чуде, свидетелем которого только что был, и о том, что оно означает.
Я спрашивал себя: неужели гений рождается лишь изредка и чисто случайно? В чем причина того, что одновременно у какого-то одного народа вдруг появляется целая плеяда гениев? Тэн считал, что Леонардо, Микеланджело и Рафаэль родились потому, что настало время великих художников и условия Италии благоприятствовали этому. В устах француза-рационалиста XIX века эта доктрина звучит странно и даже мистически, но тем не менее она, может быть, верна. А что же сказать о тех, кто родился как бы вне своего времени? Как быть с такими?
Какое счастье, думал я, что этот ребенок родился в те времена, когда он сможет легко найти приложение своим способностям! К его услугам тщательно разработанные аналитические методы исследования; до него уже существует богатейший накопленный опыт. А что если он родился бы в те времена, когда строили Стоунхендж? Культовое сооружение из камней в Англии — II тысячелетие до н. э. Целая жизнь ушла бы у него на то, чтобы открыть начатки элементарных знаний; он бы лишь смутно угадывал идеи, которые теперь имеет возможность доказать. В наши дни он за пять лет овладеет науками, для открытия которых потребовались целые поколения людей.